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Preface

This volume comprises selected papers of the Third International Workshop on
Semantics in Data and Knowledge Bases, which was collacated with EDBT 2008
and was organized in Nantes on March 29, 2008. The first two workshops “Se-
mantics in Databases” took place in Rež, Czech Republic in 1995 and Dagstuhl,
Germany, 2001. The workshops have had post-proceedings of selected papers
given at the workshop. We invited the best papers of the workshop to submit
a revised version of their paper. These revisions have been reviewed for the fi-
nal proceedings. The proceedings of the first two workshops were published by
Springer in the LNCS series, volumes 1358 and 2582. The SDKB 2008 workshop
call for papers led to 19 submissions, which were reviewed by 4 reviewers.

We selected six of the papers given at the SDKB 2008 workshop. We ad-
ditionally invited four papers that round up the proceedings. Furthermore, we
added a survey on the state of the art in the field.

The SDKB workshop series tries to bring together researchers in the areas of
data and knowledge bases who work on aspects of semantics. In particular, the
workshop presents original contributions demonstrating the use of logic, discrete
mathematics, combinatorics, domain theory and other mathematical theories
of semantics for database and knowledge bases, computational linguistics and
semiotics, and information and knowledge-based systems.

Topics of research papers are concentrated around the following research
topics:

Formal models for data and knowledge bases
Integrity constraints maintenance and dependency theory
Formal methods for data and knowledge base design
Reasoning about data and knowledge base dynamics
Adaptivity for personalized data and knowledge bases
View-centered data- and knowledge-intensive systems
Information integration in data and knowledge bases
Knowledge discovery in data and knowledge bases
Validation and verification of data and knowledge base designs
Formal linguistics for data and knowledge bases
Logical and mathematical foundations of semantics
Semantics in data- and knowledge-intensive applications

We want to thank the members of our Program Committee for their detailed
reviews and for the support in the second round of reviewing revised papers. We
are thankful to the EDBT organizers for the environment and the organization
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of the workshop. Our thanks go especially to Laurent Amsaleg, Elisabeth Lebret,
Markus Kirchberg, and René Noack for their support of the organization.

July 2008 Klaus-Dieter Schewe
Bernhard Thalheim
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Semantics in Data and Knowledge Bases

Klaus-Dieter Schewe1 and Bernhard Thalheim2

1 Information Science Research Centre,
20A Manapouri Cr, Palmerston North 4410, New Zealand

2 Christian Albrechts University Kiel, Department of Computer Science,
Olshausenstr. 40, D-24098 Kiel, Germany

kdschewe@acm.org, thalheim@is.informatik.uni-kiel.de

1 Semantics

Semantics is the study of meaning, i.e. how meaning is constructed, interpreted, clarified,
obscured, illustrated, simplified, negotiated, contradicted and paraphrased [Wan87]. It
has been treated differently in the scientific community, e.g., in the area of knowledge
bases and by database users.

– The scientific community prefers the treatment of ‘always valid’ semantics based
on the mathematical logic. A constraint is valid if this is the case in any correct
database.

– Database modellers often use a ‘strong’ semantics for several classes of constraints.
Cardinality constraints are based on the requirement that databases exist for both
cases, for the minimal and for the maximal case.

– Database mining is based on a ‘may be valid’ semantics. A constraint is considered
to be a candidate for a valid formula.

– Users usually use a weak ‘in most cases valid’ semantics. They consider a constraint
to be valid if this is the usual case.

– Different groups of users use an ‘epistemic’ semantics. For each of the group its set
of constraints is valid in their data. Different sets of constraints can even contradict.

Semantics is currently one of the most overused notions in modern computer science
literature. Its understanding spans from synonyms for structuring or synonyms for struc-
turing on the basis of words to precise defined semantics. This partial misuse results in a
mismatch of languages, in neglecting formal foundations, and in brute-force definitions
of the meaning of syntactic constructions.

1.1 Variety of Notions for Semantics

We are thus interested in a clarification of the notion of semantics. The notion of seman-
tics is used in different meanings:

Lexical semantics is the study of how and what the words in a language denote. It uses
a theory of classification and decomposition of word meaning and of association
of words via relationships such as hyponomy, synonymy, troponymy, hypernymy,
and antonymy. Word fields are the main notion for lexical semantics. An ontology

K.-D. Schewe and B. Thalheim (Eds.): SDKB 2008, LNCS 4925, pp. 1–25, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 K.-D. Schewe and B. Thalheim

is typically based on word fields in a rudimentary form and on selected associations
among words. In general, an ontology provides a shared and common understand-
ing of a domain that can be communicated between people and heterogeneous and
distributed application systems. This meaning is the basis for “Semantic” Web. It
uses a rudimentary form of word semantics for meta-characterisation.

Grammatical semantics uses categories such as ‘noun’ for things, ‘verb’ for actions
and ‘adjectives’ for descriptions. Categories are enhanced by grammatical elements.
Grammatical rules describe which syntactic expressions are well-formed. It is often
assumed that the syntactic properties of words are determined by their meaning.
Combinatorial semantics is a specific form of grammatical semantics.

Statistical semantics bases the meaning on co-occurrence of words, on pattern of words
in phrases, and on frequency and order of recurrence. Information retrieval applica-
tions use this co-occurrence pattern for for similarity detection, keyword extraction,
measuring cohesiveness in texts, discovering different senses of the word, and for
analysing and mining.

Logical semantics is based on a relation between the formal language of logics defined
on some alphabet or signature from one side and the set of structures or worlds de-
fined on the same signature from the other side. The relation serves as the means for
realising the assignment and characterises at the same time the truth of expressions
via their interpretation in the set of structures. The truth value of an expression is a
statement at a meta-language level.

Prototype semantics bases meaning on users evolving experience. It is thus culture and
community dependent. The semantical structure used for definition of the meaning
consists of different elements which have unequal status. This leads to a graded no-
tion and varying structuring within semantical structures. Some elements are better
for clarification of the concepts. Elements are are mainly possible contributors to the
meaning. Semantical structures may be layered into basic level ones and combined
ones.

Program and dynamic semantics is based on the semantic memory, i.e. the memory of
meanings, understandings, and other concept-based knowledge unrelated to specific
experiences of agents. Dynamic semantic structures may be represented by generic
[BST06] or abstract structures (e.g. semantic networks, associative or feature or sta-
tistical models) that apply to a wide variety of experimental objects. It overcomes
limitations of the nativist view on semantics and explicitly considers evolution of
meaning depending on a state of a reference system such as the computer and de-
pending on the context and agents. Database semantics is based on expression-linear
definition of meaning and allows to reduce the meaning to those components that
are necessary for definition of the meaning. Dynamic semantics supports seman-
tic under-specification and transfer of meaning by injection of context and agent
opinion.

Semantics can be based

– on constructors and compositions in the sense of Frege that the interpretation can be
defined by the interpretation of a constructor and an interpretation of constituents
of complex expressions and the interpretation of basic is provided by assumptions,
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– on context in the sense of reduction logics by assigning a set of rules for expan-
sion of expressions to expressions for a meaning is defined and by defining agents
with roles such as hearer and speaker that provide an understanding in their worlds,
e.g., reduction semantics used in database semantics for reduction of components
of sentences to proplets, and

– on transformations to other languages for which a semantics is well-defined and by
transformation rules which meaning is well-understood and and concise.

The principle of compositionality postulates that the meaning of an expression is deter-
mined by its structure and its constituents. This principle is productive in the sense that
meaning can be derived without any explicit definition in advance and is systematical in
the sense that there are definite and predictable pattern among expressions. Expressions
are referentially transparent since they can be replaced or instantiated by values with-
out changing the expression. Queries are referentially transparent whereas commands
in non-functional languages may change the environment and are context-dependent.
Compositionality is one of the main conditions for axiomatisability of logics. Composi-
tionality cannot be maintained within context-dependent or time-dependent structures.

Considering more complex type systems the treatment of missing values adds another
dimension to semantics. For instance, in the entity-relationship model [Tha00a] entity
types can be defined on set semantics and relationship types can be based on pointer
(or reference) semantics enabling thus the developer to reason on ‘missing links’. This
difference in the treatment of semantics has led to some of the problems discussed for
view integration. We therefore established this workshop seria together with the FoIKS
conferences in order to maintain the knowledge on semantics in both fields.

1.2 The Semiotics Background of Semantics and Pragmatism

Database and knowledge base theory use languages. Therefore, we are bound to the
conceptions of the language, the expressivity of the language, and the methodology for
language utilisation. The Sapir-Whorf observation [Who80] postulates that developers
skilled in a certain language may not have a (deep) understanding of some concepts of
other languages.

Semantics is the study and knowledge of meaning in languages. It is a central com-
ponent of semiotics. Modern semantics [Hau01] is based on a notion of meaning and
reference, on a notion of semantic spaces, on a construction of semantic structures such
as semantic fields, on a notion of semantic relations among constructions, on semantic
components, and on a notion of prosodic, grammatical, pragmatical, social and proposi-
tional meaning of constructions. Semiotics distinguishes between syntactics (concerned
with the syntax, i.e., the construction of the language), semantics (concerned with the
interpretation of the words of the language), and pragmatics (concerned with the mean-
ing of words to the user). Most languages used in computer science have a well-defined
syntax. Their semantics is provided by implementations which are often not made pub-
lic and their pragmatics is left to experimentation by the user. This ‘banana’ or ‘potato’
principle leads to very different utilization and does not allow consistent use by groups
of developers and over time. Each step is based on a specification language that has its
syntax, semantics, and pragmatics.
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Syntactics: Inductive specification of structures uses a set of base types or a vocab-
ulary or an alphabet, a collection of constructors and an theory of construction limit-
ing the application of constructors by rules or by formulas in deontic logics. In most
cases, the theory may be dismissed. Structural recursion is the main specification
vehicle. Constructors may be defined on the basis of grammatical rules.

Semantics: Specification of admissible structures on the basis of static (integrity)
constraints describes those structures which are considered to be legal. If structural
recursion is used then a variant of hierarchical first-order predicate logics may be
used for description of constraints.

Pragmatics: Description of context and intension is based either on explicit refer-
ence to the model, to tasks, to e policy, and environments or on intensional logics
used for relating the interpretation and meaning to users depending on time, loca-
tion, and common sense.

These main branches of semiotics cannot be entirely layered and are intertwined. The
meaning of a word depends on its use [Wit58] and its users. We often assume however
that syntax is given first. We should distinguish between expression meaning, statement
meaning, and context or utterance meaning. The first one is designates the semantic prop-
erties an expression possesses merely by the virtue of being well formed and is based on
the propositional content of the expression, i.e. propositions or semantical units it con-
tains, on the interrogative, imperative, and/or expressive meaning, and finally on features
of formal distinction. A statement postulates that some state of affairs holds. It has a truth
value. The statement meaning has two parts: an element of assertion and something that
is asserted. What is asserted is called proposition. The proposition is an expression that
can be believed,doubted, or denied or is either true or false. The simplest type of propo-
sition consists of an argument and a predicate. The context meaning depends on the
intention of the sender and the relationship of the sender with the speaker and is based
on auxiliary expressions shared between sender and receiver.

We also may distinguish between the existential approach to meaning based on a
correlation of expressions in a language with aspects in the world. The intentional ap-
proach associates some kind of representation with concepts as the main constituents
of the sense and depends on the cultural context. Semantical units or propositions are
interrelated by entailment. Entailment is different from material implication and relates
propositions by forward propagation of truth and backward propagation of falsity. Propo-
sitions can be contraries, contradictories, or independent. They may belong to a category
or genre of expression, are given in a certain style or manner, are often based on stereo-
typical norms of expression, depend on ideas and values that are employed to justify,
support or guide the expression, reflect aspects of culture or social order, are shaped ac-
cording to the community that uses them, and are configured by theories or paradigms.

Pragmatism means a practical approach to problems or affairs. According to Web-
ster [Web91] pragmatism is a ‘balance between principles and practical usage’. Thus,
it is a way of considering things. Pragmatism may be based on methodologies, e.g.,
database design methodologies. For instance, the co-design methodology of database
development [Tha00a] enables in consistent design of structuring, functionality, interac-
tivity and distribution of information systems. The constituents of the methodology are,
however, constructs of the design language and constructors used to construct complex
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construction. Constructs we use are the elements of the extended entity-relationship
models [Tha00a]: attribute types, entity types, relationship types of arbitrary order, and
cluster types. Constructors used for defining more complex types are: (Cartesian) prod-
uct constructor (for associating types) and list, tree set and bag constructors (for con-
structing groups or collections of types)[Tha00b]. The way of considering things or the
practical usage has been investigated in less depth. Schemata have a certain internal
structuring or meta-structuring. Thus, pragmatism of modelling should also be based
on principle to handle the meta-structuring within the schemata.

1.3 Formal Semantics in General

Formal semantics is typically based on a system that allows to reason on properties of
systems. It aims in describing syntactic and semantic types or elements that are used as
well as the meaning function that maps syntactic types to semantic types. There are sev-
eral forms of formal semantics: operational, denotational, axiomatic, transformational,
algebraic, macro-expansion, and grammar semantics.

Formal semantics typically assume compositionality. The principle of composition-
ality is not necessary and may contradict applications. Compositionality assumes that the
elements are independent from each other. For instance, the classical XOR-
connective ¬(α ∧ β) defines incompatibility of α and β. It thus provides a context for
subexpressions. Idioms, non compounds, active zones and complex categories cannot be
based on compositionality. If compositionality is assumed we may distinguish between
the additive mode where the meaning of components is added for the constructor and the
interactive mode where the meaning of at least one components is radically modified.
Formal semantics mainly uses the additive mode. Natural, lexical, prototype, statistical
and partially program semantics use the interactive mode. The meaning of a complex
expression can either be of the same basic type as one of the components (endocentric)
or of a different type (exocentric).

Different variants of semantics is used in computer science [Bak95, BS03, Gun92],
[Mos92, Rey99, Ten97, Tha00a]. A formal semantics [Cry87, Sch71, Sch72, Ste73] is
typically given

– by an interpreter that maps syntactic types to semantic types,
– by a context abstraction that is based on an aggregation of values which remain fixed

in certain temporal and spatial intervals,
– by states that provide a means of representing changes over time and space,
– by an configuration that is based on an association of contexts and states,
– by an interpretation function that yields state results based on certain computation,
– by an evaluation function that yield some value results for the syntactic types, and
– by an elaboration function that yield both state and some other value results.

These mapping are often given in a canonical setting, i.e. interpreters are defined on
signatures, context abstraction is neglected due to use of the most general types, states
are based on mathematical structures, configurations are fixed, and interpretation func-
tions are given in a canonical setting. The evaluation function can be freely configured.
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The elaboration function is used for the definition of aggregates such as the quantifiers.
Mathematical logics and formal semantics in computer science is defined by such canon-
ical setting.

In computer science we may distinguish between static semantics that lays down what
it means for terms to be well defined (beyond syntactic criteria) and dynamic semantics
that determines the meaning of terms. Dynamic semantics is mainly defined through
operational semantics either via small-step operational semantics (structural operational
semantics or reduction semantics) or big-step operational semantics (natural semantics
or evaluation semantics), or through denotational semantics or through axiomatic se-
mantics. Additionally, transformational and algebraic approaches are used.

These seven mappings are the basis for a variety of definitions of semantics. Formal
semantics does not oblige any restriction by states or context. It uses a strict matching
between the syntactical language and the world of semantical structures either by strict
association or by embedding of expressions in the syntactical language L into the lan-
guage L′ in the world of semantical structures. In the opposite, matching is only partial
for natural logics. We may for instance use different kinds of mappings for different
logics:

mappings logics closed world
logics

logics on finite
worlds

logics on natural
worlds

matching of syntactic lan-
guage L and semantic struc-
ture worlds W on signature τ

exact or co-
incidence em-
bedding

exact exact or coinci-
dence embedding

partial depending
on interest and
meaning in use

considering context no no no depending on use
and user

considering states any any only finite struc-
tures

states in scope

restricting states and context no no no depending on in-
terest and demand

interpretation for alphabets exact for al-
phabet

exact potentially
restricted

multiple interpre-
tations

evaluation of variables full full full partial evaluation
elaboration full negation as

failure
derivable
structures

extrapolation

This table shows the variety of approaches that might be used for the definition of se-
mantics. Application models restrict languages to those parts that are currently of inter-
est. The context also considers enterprise and social models. Integrity constraints used
in database models are not interpreted for specific values such as null values. Interpre-
tation of expressions is restricted to meaningful expressions in finite worlds, e.g. the
tuple-relational calculus in relational database theory only defines the meaning of those
expressions that map finite structures to finite structures.

Formal semantics may be understood as the semantics of formal languages. Model-
theoretic semantics is widely used in computer science, e.g. for semantics of databases.
It defines the meaning by recursive mapping to some predefined mathematical structures
and by assigning propositions to truth values. Proof-theoretic semantics is widely used in
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artificial intelligence and for knowledge bases. It associates the meaning of propositions
with the roles that they play in inferences. Truth-value semantics assigns a truth value to
expressions without reference to structures. Game and probabilistic semantics are other
kinds of formal semantics.

1.4 Semantics of Mathematical Logics as One Kind of Semantics

Mathematical logics uses a canonical way of associating syntactic and semantic types.
Additionally, the semantic type and the syntactic type have the same signature. The ex-
pressions of syntactic types are inductively constructed starting with some basic expres-
sions of certain construct by application of expressions of some other construct. For
instance, we may start with truth values and variables. Terms and formulas are then
based on these basic expressions.

The semantic type LOG of first-order mathematical logics uses the two truth values
true and false, canonical connectives ∧,∨ and ¬ and the quantifiers ∀ and∃.

The interpreter is given by a canonical mapping. Context abstraction is defined by the
trivial context and thus not considered. Most logics do not consider changing states. The
interpretation function is an inductive function that is based on interpretation of basic
expressions and follows the construction of expressions. The evaluation and elaboration
functions allow to consider different value assignments to an expression.

The correspondence mapping in logics can be combined with additional constructs
such as validity, satisfiability, and conclusions. A expression of the construct ‘formula’
is considered to be true if it is mapped to the truth value true from LOG. A expression
of a syntactic type follows from a set of expressions if the truth value true is assigned
to the expression whenever this truth value has been assigned to the set of expressions.

This understanding of logics in general may be defined on transparent intensional
logics [DM00]. The association of syntactic types and semantic types is typically rather
restricted. In some case, we might broaden this specific form of semantics.

Classical predicate logics is based on monotone reasoning. The derivation operator
�Γ for a calculus Γ and the conclusion operators |= for the inheritance of validity in
structures are monotone, i.e for sets of formulasΣ,Σ′ and a formulaαwe may conclude
thatΣ ∪Σ′ �Γ α or σ ∪Σ′ |= α if Σ �Γ α or σ |= α, correspondingly. OperatorsAΨ

define a closure for a set-formula relation Ψ on L, e.g., Cons(X) = {α ∈ L |X |= α}
andDeriv(X) = {α ∈ L |Ax ∪X �Γ α} for a set of axioms Ax.
The first main theorem of monotone reasoning states that Σ ∪ Ax �Γ α if and only if
Σ |= α for any set Σ ⊆ L and for any formula α ∈ L (Completeness and soundness).

Useful properties for relationships Ψ and their closure operatorsAΨ are

1. Reflexivity: Σ ⊆ AΨ (Σ) .
2. Monotonicity: IfX ⊆ Y then AΨ (X) ⊆ AΨ (Y ) .
3. Closure: AΨ (AΨ (Σ)) = AΨ (Σ) .
4. Compactness: If α ∈ AΨ (X) then there exists a finite set X ′ ⊆ X such that
α ∈ AΨ (X ′).

5. Inference property: If α→ β ∈ AΨ (X) then β ∈ AΨ (X ∪ {α}) .
6. Deduction property: Ifα ∈ AΨ (X∪{β}) and β is closed then β → α ∈ AΨ (X).
7. Generalization invariance: Let Gen(Σ) denote the set of generalization of

formulas from Σ . AΨ (Gen(X)) = AΨ (X) .
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8. Transitivity: If α ∈ AΨ (Σ) and β ∈ AΨ (Σ ∪ {α}) then β ∈ AΨ (Σ) .

The second main theorem of monotone reasoning states that if AΨ1 and AΨ2 are map-
pings from 2L into 2L with the propertyAΨ1(∅) = AΨ2(∅) which fulfill the conditions
1. ... 7. then for every Σ ⊆ L AΨ1(Σ) = AΨ2(Σ).
The third main theorem states that Cons and Deriv fulfill the conditions 1. ... 7. and
Cons(∅) = Deriv(∅).
The fourth main theorem states that for any mapping AΨ : 2L → 2L the following
assertions are equivalent:

(i). AΨ is a compact closure operator (i.e. fulfills the conditions 1.,2.,3.,4.).
(ii). There exist a system �Γ of deduction rules on L such that AΨ ≡ A�Γ .

The fourth theorem gives a very powerful characterisation of axiomatisability of closure
operators. This characterisation covers axiomatisability of classical predicate logics and
of Prolog-based predicate logics. The last one does not have the property of generaliza-
tion invariance. It obeys the strong deduction property, i.e. if α ∈ AΨ (X ∪ {β}) then
β → α ∈ AΨ (X).

1.5 Formal Semantics in Computer Science

Computer science uses a variety of formal semantics:

Operational semantics interprets syntactic types by computational types of a possibly
recursive machine may be based on varying context abstraction, and is often ex-
pressed in terms of state changes. Operational semantics is often defined on the basis
of traces or sequences of states of the machine.

Denotational semantics associate mathematical functions to syntactic types, abstracts
from context abstraction, and uses abstract states whose usage is based on the ho-
momorphism principle. Denotational semantics uses partially ordered sets and their
topology and thus defines Scott or Girard domains for interpretation.

Axiomatic semantics uses a calculus with axioms and proof rules that provides a mech-
anism for deriving correct syntactic types. Relational semantics is a special case of
axiomatic semantics and is based on a specification of a start state and a set of final
states. Functional semantics additionally assumes the set of final states to be single-
ton. Axiomatic semantics has also been defined through predicate transformers that
provide a facility for backward reasoning starting with a target state.

Transformational semantics uses mappings to other syntactic types. They thus base
semantics both on the (hopefully) well-defined mappings and on the semantics of
the target system. Denotational semantics is a specific form of transformational se-
mantics. It uses a mathematical formalism instead of another computer language.
Categorical or functorial semantics is based on a translation to category theory.

Algebraic semantics uses a set of abstract basic syntactic systems with their semantics
and a set of rules for construction of more complex systems based on these systems.
Algebraic semantics can be defined through initial and final algebras or structures.

Macro-expansion semantics is based on static or dynamic inductive rewriting of syn-
tactic types and allows to introduce abstractions such as the types of the λ calculus.
Abstraction may be directly defined or based on a notion of fixed points.
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Grammar semantics is a specific form of operational semantics and uses a state con-
sisting of semantic category variables and on instantiations for atomic non-terminal
syntactic types.

These semantics can be modularised or layered. For instance, action semantics uses pre-
defined expressions (action, data, and yielders) and denotational semantics.

Semantics is often mixed with “concrete semantics” [Bjø06] that provides and ‘ev-
eryday meaning’ and that is mixed with ‘pragmatic structures’. Often transformational
semantics are used for interpretation of syntactic types. This interpretation is given in
an informal way without providing a well-founded mapping and without precise seman-
tics of the target domain. A typical example of such approach is the BPMN semantics
that is based on informal description and on partial and changing mappings to BPEL
types which are defined by various concrete implementations. Algebraic semantics are
convenient if systems can be constructed from basic systems without limiting the con-
struction process itself. Typical constructions of this kind are abstract data types, entity-
relationship or object-relational database types, and frame types used in AI. It supports
modularisation and separation of concern.

1.6 The Duality of Syntactic and Semantic Types

It is often claimed (e.g. [HR04]) that syntactic and semantic types cannot be defined.
Mathematical logics uses a canonical approach to the definition of types. It starts with
an enumeration of the alphabet. Words are constructed by certain rules over this alphabet.
If elements of the alphabet can be categorised then we may consider similar alphabets
and define a signature of elements of the language based on this categorisation. We may
concentrate on all languages of the same signature. Computer science uses a similar
approach by defining types through domains, a set of operations defined on the domains,
and a set of predicates for the domains.

Formal languages have clearly defined and separated layers and use canonical tech-
niques for construction of values of the language. We start with the enumeration of an
alphabet. Some combinations of elements of these alphabets form words. Some of these
words are considered to be reserved words which usage is restricted. The next layer
groups words into expressions. The final layer constraints the expressions by additional
conditions.

A syntactic type is given by one (or more) language(s), constructs, and a set of (con-
crete or abstract) expressions of interest.
LetL be a set of (supported) languages, CL the set of all constructs of a certain modelling
language L ∈ L and SC the set of all possible states of a certain construct C ∈ CL. An
expression of the syntactic type T is a triple (L,C, S) denoting a language L ∈ L, a
construct C ∈ CL, and an instance S ∈ SC .
Typically, one of the language is canonical. In this case we also consider a canonical set
of constructs. We may omit the language and the set of constructs if we concentrate on
the canonical language and set of constructs.

By a semantic type we understand a set of (concrete or abstract) semantic values
within a certain (or some) language(s) and for a set of expressions: meanings of syn-
tactic values. We may restrict the meaning of syntactic values to semantic values of the
same (or expanded) signature. We assume one special type LOG that provides truth
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values. We may also consider different variations or worlds. Let TW a syntactic type of
all worlds of interest. The set of possible worlds may also represent different versions
of time and space.

The semantic type is typically defined by a state consisting of a set of individuals
of certain categories, by operations and by predicates. The type LOG consists of truth
values, connectives defined over these truth values, and generic quantifiers that provide
a abstraction mechanism for some of its parameters to sets of values of other types.
Examples of generic quantifiers are classical existence and generalisation quantifiers
as well as generalised one- or two-dimensional quantifiers that are applied to pairs of
expressions and describe the behaviour of components of the expressions in the whole.
Typical generalised one-dimensional quantifiers are majority, many, at least and odd.
Quantifiers may also be temporal ones.

In some case we might also use signatures that are completely different. One of the
misconceptions of formality in computer science is the belief that only such languages
are formal that uses mathematical symbols for expressions. Visual and diagrammatic
languages might be formal as well.

The interpreter is based on an association of syntactic and semantic types and on an
intensional function f : ωi1 ×ωik

×E → α which maps possible worlds (wi1 , ..., wik
)

and expressionsE to elements of a semantic typeα. Intensional functions may be evalu-
ated but do not reveal the internal structure of the valuation or their relationship to other
intensional functions. The intensional function can also be built by an intensional con-
struction that is used to relate valuations of the function with valuations of other first
order types. The context may either be a singleton context or a set of contexts. Given a
a context c, a set of intensional functionsF = {f1, ..., fn}, a logical language L and T
a ‘theory’ of expressions from L that formulate the knowledge about the valuations of
F . The tuple B = (F , T ) is called a concept of a syntactic type in context c. Let F be
a set of states. A configuration is a set of functions i : F→ B mapping states from F to
concepts from B = {B1, ...,Bn} in the current context.

The interpretation function can now be understood as a derived function for a syn-
tactic type and a set of semantic types. Basic expressions are mapped according to the
intentional function. Elaboration functions are assigned generic quantifiers.

1.7 Micro-semantics of Wordings

Semantics often relies on pre-interpretation of some of its constructs and expressions.
We may restrict the interpreter to a certain language, to a certain context and to cer-
tain states. In this case, the association of expressions to concepts becomes biased to
a specific semantics. This micro-semantics is typically used with syntactic expressions
such as words. The word has already a specific meaning. For instance, reserved words
in programming languages are bound to a specific semantics.

This micro-semantics is often also used in applications of the so-called semantic web.
Words are already provided together with a name space and a pre-interpretation. This
pre-interpretation cannot be changed unless the name space is going to be changed.
Communities agree on a common name space and thus introduce their ontology. The
sentence meaning of XML documents is exclusively based on the words it contains and
their grammatical arrangement.
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Micro-semantics of wordings is also used within the theory of word fields [ST08].
Words have their own syntactical ingredients, their micro-semantics, their language us-
age (or language game [Wit58]) and their pragmatic application area.

Micro-semantics should not be confused with semantics. It is only a part of seman-
tics and cannot replace semantics or used to derive semantics. It is tempting to use such
micro-semantics within a culture or community. It does however not provide the com-
plete meaning of a syntactic expression.

2 Pearls of Database Theory

Designing a database application means to specify the structure, the operations, the static
semantics and the dynamic semantics. The aim is to find a full specification or at least
to find a specification which leads to a database structure on which operating is simple.

Structuring of databases is based on three interleaved and dependent semiotic parts
[PBGG89, Tha91]:

Syntactics: Inductive specification of database structures based on a set of base types,
a collection of constructors and an theory of construction limiting the application
of constructors by rules or by formulas in deontic logics. In most cases, the theory
may be dismissed. Structural recursion is the main specification vehicle.

Semantics: Specification of admissible databases on the basis of static integrity con-
straints describes those database states which are considered to be legal. If structural
recursion is used then a variant of hierarchical first-order predicate logics may be
used for description of integrity constraints.

Pragmatics: Description of context and intension is based either on explicit reference
to the enterprise model, to enterprise tasks, to enterprise policy, and environments
or on intensional logics used for relating the interpretation and meaning to users
depending on time, location, and common sense.

2.1 Rigid Inductive Structures

The inductive specification of structuring is based on base types and type construc-
tors. A base type is an algebraic structure B = (Dom(B), Op(B), P red(B)) with a
name, a set of values in a domain, a set of operations and a set of predicates. A classBC

on the base type is a collection of elements form dom(B). Usually, BC is required to
be set. It can be list, multi-set, tree etc. Classes may be changed by applying operations.
Elements of a class may be classified by the predicates.

A type constructor is a function from types to a new type. The constructor can be
supplemented with a selector for retrieval (such as Select) and update functions (such as
Insert, Delete, and Update) for value mapping from the new type to the component types
or to the new type, with correctness criteria and rules for validation, with default rules,
with one or more user representations, and with a physical representation or properties
of the physical representation.

Typical constructors used for database definition are the set, tuple, list and multi-
set constructors. For instance, the set type is based on another type and uses algebra
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of operations such as union, intersection and complement. The retrieval function can be
viewed in a straightforward manner as having a predicate parameter. The update func-
tions such as Insert, Delete are defined as expressions of the set algebra. The user rep-
resentation is using the braces {, }. The type constructors define type systems on basic
data schemes, i.e. a collection of constructed data sets. In some database models, the
type constructors are based on pointer semantics.

General operations on type systems can be defined by structural recursion. Given a
types T , T ′ and a collection type CT on T (e.g. set of values of type T , bags, lists) and
operations such as generalized union ∪CT , generalized intersection ∩CT , and general-
ized empty elements ∅CT on CT . Given further an element h0 on T ′ and two functions
defined on the types h1 : T → T ′

and h2 : T ′ × T ′ → T ′.
Then we define the structural recursion by insert presentation for RC on T as follows
srech0,h1,h2(∅CT ) = h0

srech0,h1,h2(|{|s|}|) = h1(s) for singleton collections |{|s|}|
srech0,h1,h2(|{|s|}| ∪CT RC) = h2(h1(s), srech0,h1,h2(RC))

iff |{|s|}| ∩CT RC = ∅CT .

All operations of the relational database model and of other declarative database
models can be defined by structural recursion. Structural recursion is also limited in
expressive power. Nondeterministic while tuple-generating programs (or object gener-
ating programs) cannot be expressed. We observe, however, that XML together with the
co-standards does not have this property.

Another very useful modelling construct is naming. Each concept type and each con-
cept class has a name. These names can be used for the definition of further types.

Static integrity constraints are specified within the universe of structures defined by
the structural recursion.

Observation 1

Hierarchical structuring of types leads to a generalized first-order predicate logics.

Observation 2
In general, cyclic structuring leads to non-first-order logics. Structures with abstract link-
ing are potentially cyclic.

2.2 Static Integrity Constraints

Each structure is also based on a set of implicit model-inherent integrity constraints:

Component-construction constraints are based on existence, cardinality and inclu-
sion of components. These constraints must be considered in the translation and
implication process.

Identification constraints are implicitly used for the set constructor. Each object either
does not belong to a set or belongs only once to the set. Sets are based on simple
generic functions. The identification property may be, however, only representable
through automorphism groups [BT99]. We shall later see that value-representability
or weak-value representability lead to controllable structuring.
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Acyclicity and finiteness of structuring supports axiomatisation and definition of the
algebra. It must, however, be explicitly specified. Constraints such as cardinality
constraints may be based on potential infinite cycles.

Superficial structuring leads to representation of constraints through structures. In this
case, implication of constraints is difficult to characterize.

Implicit model-inherent constraints belong to the performance and maintenance traps.
Integrity constraints can be specified based on the B(eeri-)V(ardi)-frame, i.e. by an

implication with a formula for premises and a formula for the implication. BV-constraints
do not lead to rigid limitation of expressibility. If structuring is hierarchic then BV-
constraints can be specified within the first-order predicate logic. We may introduce a
variety of different classes of integrity constraints defined:

Equality-generating constraints allow to generate for a set of objects from one class
or from several classes equalities among these objects or components of these
objects.

Object-generating constraints require the existence of another object set for a set of
objects satisfying the premises.

A class C of integrity constraints is called Hilbert-implication-closed if it can be ax-
iomatised by a finite set of bounded derivation rules and a finite set of axioms. It is
well-known that the set of join dependencies is not Hilbert-implication-closed for rela-
tional structuring. However, an axiomatisation exists with an unbounded rule, i.e. a rule
with potentially infinite premises.

Often structures include also optional components. Let us denote the set of all compo-
nents of a setO of objects by compon(O) and the set of all optional components ofO by
componopt(O). Similarly we denote the set of all components used in a constraint α by
compon(α). Validity of constraints is either based on strong semantics requiring valid-
ity for all object sets independently on whether componopt(O) ∩ compon(O) 
= ∅
or on weak semantics requiring validity for constraints only for those object sets O
for which componopt(O) ∩ compon(O) = ∅ . Classical validity is based on weak
semantics which has a severe disadvantage:

Observation 3
Weak semantics leads to non-additivity of constraints for object sets O with O by
componopt(O) 
= ∅ , i.e., it is not true in general that O |= {α1, ...., αm} is valid if
and only if O |= {αi} for each constraint in {α1, ...., αm} .

Observation 4
Strong semantics leads to non-reflexiveness or non-transitivity of constraints for object
sets O with O by componopt(O) 
= ∅ , i.e., O 
|= α→ α for some constraints α or
the validity of O |= α→ β and O |= β → γ does not imply O |= α→ γ .

Since constraint sets may be arbitrary we might ask in which cases an axiomatisation
exists. The derivation operator �Γ of a deductive system Γ and the implication operator
|= may be understood as closure operators Φ, i.e.
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(0) Φ0(Σ) = Σ
(i) Φi+1(Σ) = {α ∈ C ∩ Φ(Φi(Σ))}
(+) Φ∗(Σ) = limi→∞Φi(Σ)
for any subset Σ from a class C of constraints.

The closure operator Φ is called compact for a class C if the property α ∈ Φ∗(Σ)
implies the existence of a finite subsetΣ′ ofΣ such that α ∈ Φ∗(Σ′). It is called closed
of Φ∗(Φ∗(Σ)) = Φ∗(Σ) for any Σ ⊆ C. The closure operator is called monotone if
Φ∗(Σ) ⊆ Φ∗(Σ ∪ Σ′). The operator is reflexive if α ∈ Φ∗(Σ ∪ {α}) for all formulas
and subsets from C.

Observation 5
The implication operator Φ∗

|= is reflexive, monotone, closed and compact if and only
if there exists a deductive system Γ such that ΦΓ and Φ|= are equivalent. If Φ|=
additionally has the inference property, the deduction property and is generalization
invariant then Φ∗

Γ (∅) = Φ∗
|=(∅) .

If the deduction property fails then the axiomatisation by a deductive system may be
based on some obscure rules similar to those for the axiomatisation of PROLOG.

Constructors used for construction of more complex types are often used for conve-
nience and representing a different structuring. A typical example is the application of
the list constructor with the meaning of representing sets. In this case we must add an
list-to-set axiom
∀t ∈ compon(o)∀i, j(type(o.i) = type(o.j) = t ⇒ value(o.i) = value(o.j)) .
This axiom is often overseen and not considered.

Observation 6
Semantics for structures defined by the list constructor and representing set must be
extended by list-to-set axiom.

Since attributes are also constructed on the basis of constructors from base types we may
ask whether this construction affects the definition of constraints and the axiomatisabil-
ity. This question is open for most of the constraints. In [Lin03] it has, however, shown
that keys and functional dependencies have a similar treatment as in the relational case.
Substructures are, however, more complex and represented by the Brouwerian algebra
of subcomponents.

2.3 Application of Database Semantics to Semantical Models

The entity-relationship model has been extended to the higher-order entity-relationship
model (HERM)[Tha00a]. HERM is a set-theoretic based, declarative model which ob-
jects are value-oriented. For this reason, object identifiers are omitted.

The entity-relationship model uses basic (or atomic) data types such as INT, STRING,
DATE, etc. the null type⊥ (value not existing). Using type constructors for tuples, finite
(multi-)sets and lists and union we construct more complex types based on standard set
semantics:

t = l : t | B | (a1 : t1, . . . , an : tn) | {t′} | 〈t′〉 | [t′]| (a1 : t1)
·
∪ . . .

·
∪ (an : tn)

These types will be used to describe the domains of (nested) attributes.
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Attributes allow to conceptually abstract from describing values. Associated data
types provide the possible values. We use a set of namesN = N0∪Nc for attributes such
as address, street, city, name, first name, destination, trip course etc. Elements fromN0

are called atomic attributes.
Each atomic attribute is associated with a atomic type dom(A).
Nested attributes are inductively constructed from simpler or atomic attributes by the
iteration condition:

For already constructed nested attributes X,X1, ..., Xn and new attributes
Y, Y1, ..., Ym the sequences
Y (X1, ..., Xn), Y {X}, Y 〈X〉, Y [X ], Y ((Y1 : X1) ∪ · · · ∪ (Yn : Xn))

are tuple-valued, set-valued, list-valued, multiset-valued and union-valued nested
attributes.
Associated complex types are defined by the attribute structure. In the logical calculus
below we use only tuple-valued and set-valued attributes. The calculus can similarly be
extended.

For all types we use set semantics based on the basic type assignment.

Entity Types (or level-0-types)E = (attr(E)) are defined by a set attr(E) of nested
attributes. A subset X of attributes can be used for identification. This subset is called
key ofE. In this case we consider only those classes which objects can be distinguished
by their values onX .

Relationship Types (or level-(i + 1)-types) R = (comp(R), attr(R)) are defined
by a tuple comp(R) of component types at levels ≤ i with at least one level-i-type
component and a set attr(R) of nested attributes. We use set semantics with expanded
components under the restriction that comp(R) forms a key of R. Unary relationship
types with |comp(R)| = 1 are subtypes.

Clusters (also level-i-types)C = C1⊕· · ·⊕Ck are defined by a list 〈C1, . . . , Ck〉 of
entity or relationship types or clusters (components). The maximal level of components
defines level i. We set semantics (union) or equivalent pointer semantics.

Corresponding classes of a type T are denoted by TC .R(T ) is the set of all classes of
T . Basic type assignment is equivalent to pointer semantics with value representability.

The usual graphical representation of the extended ER model is a labelled directed
acyclic graph. Entity types are denoted graphically by rectangles. Relationship types are
graphically represented by diamonds with arrows to their components. Attributes are
denoted by strings and attached to the types by lines. Key components are underlined.

A HERM scheme S is a set {R1, ...Rm} of types of level 0, ..., k which is closed,
i.e. each set element has either no components (entity type) or only components from
{R1, ...Rm}.

Based on the construction principles of the extended ER model we can introduce
the HERM algebra [Tha00a]. In general, for a HERM scheme S the set Rec(S) of all
expressions definable by structural recursion can be defined.

Since HERM database schemes are acyclic and types are strictly hierarchical we can
construct a many-sorted logical language by generalizing the concept of variables.

Given a HERM scheme S. Let NS the set of all names used in S including type
names. A sort is defined for each name fromNS . The sort sets are constructed according
to the type construction in which the name has been used. Entity and relationship types
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are associated with predicate variables. The logical language uses type expansion for
representation of relationship types. We can use key-based expansion or full expansion.
Full expansion uses all components of the component type. Key-based expansion uses
only (primary) key components. If all names are different in S then we can use lower-
case strings for variable names. If this is not the case then we use a dot notation similar
to the record notation in programming languages.

The HERM predicate logic is inductively constructed in the same way as the predicate
logic. Instead of simple variables we use structured variables. This language enables us
to specify restrictions on the scheme. Queries can be expressed in a similar way.

We can also specify behavior of a database over lifetime. A database is modified by
an action or more general by a transaction. Basic actions are queries or conditional ma-
nipulation operations. Manipulation operations such as insert, delete, update are defined
in the HERM algebra. Database behavior can be specified on the basis of states. Given
a HERM scheme S = {R1, ...Rm} . A state is the set of classes {RC

1 , ...R
C
m} with

RC
i ∈ R(Ri), 1 ≤ i ≤ m which satisfies certain restrictions Σ.
The structuring of the extended ER model allows to deduct a number of properties. As

an example we consider the axiomatisation of constraints generalizing those discussed
in [Tha91]. We observe first that implication in the hierarchical predicate logic is reflex-
ive, monotone, compact and closed. Let us consider classes of BV-constraints in HERM
which form a cylindric algebra [Tsa89]. The order of constraints by Φ|= possibly can be
based on the order of of premises and conclusions. In this case the constraint set forms
a pair algebra.

Observation 7
Cylindric classes are pair algebras.

Examples of cylindric classes are the class of functional dependencies, the classes of
Hungarian functional dependencies [Tha91], the class of inclusion dependencies and
the class of multivalued dependencies. Further, the n-class of all≥ n-functional depen-
dencies X → Y which left side contains at least n components and the class of rigid
≤ n-inclusion dependencies T1[X ] ⊆ T2[X ] which component list contain at most n
components form a cylindric constraint set. Usually, union does not preserve cylindric
sets.

Observation 8
Cylindric constraint classes are axiomatised by reflexivity axioms, augmentation and
transition rules.

If an axiomatisation leads to reflexivity, augmentation and transitivity then union and
decomposition rules can be deducted by the other rules. Transitivity may have to consider
the specific influence of premises, e.g., transitivity for full multivalued dependencies is
based on the root reduction rule [Tha91].

Based on this axiomatisation we may introduce a general vertical decomposition
form:
Given a schema structuring S = (ER, ΣS). A vertical decomposition of S is given a
a mapping τ from S to S′ which is defined by projection functions. The decomposi-
tion is lossless if a query q on S′ can be defined such that for each db on S the equality
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q(τ(db)) = db is valid.
Let furtherΣ′ the set of those constraints fromΦ|=(Σ) which are entirely defined on the
structures in S′. A decomposition based on projection is called C-constraint preserving
if Σ ⊆ Φ|=(Σ′) .

Classical example of vertical decompositions are decompositions of relations to re-
lations in the third normal form.

We may now introduce a general class of C-decomposition algorithms:

Construct basic elements which are undecomposable.
Derive maximal elements by backward propagation of augmentation.
Reduce redundancy in the constraint set by backward propagation of transitivity.
Derive a left-right graph by associating conclusions of a constraint with the premise

of another constraint.
Combine all minimal left sides of constraints which are not bound by another con-

straint to a group.
Derive projections based on all groups in the graph.

The first step of the decomposition algorithm is only introduced for convenience. This
algorithm is a generalization of the classical synthesis algorithm.
Observation 9
The C-decomposition algorithm leads to C-constraint preserving decomposition if the
class C is cylindric.

2.4 Maturity and Capability of Object-Oriented/Object-Relational Models

Object-oriented database models have been developed in order to overcome the impe-
dance mismatch between languages for specification of structural aspects and languages
for the specification of behavioral aspects. So far, no standard approach is known to
object-orientation. Objects are handled in databases systems and specified on the basis
of database models. They can own an object identifier, are structurally characterized by
values and references to other objects and can posses their own methods, i.e.

o = (i, {v}, {ref}, {meth})

The value characterization is bound to a structure of the type T which is already
defined. Characterizing properties of objects are described by attributes which form the
structure of the object. Objects also have a specific semantics and a general semantics.
The properties describe the behavior of objects. Objects which have the same structure,
the same general semantics and the same operators are collected in classes. The structure,
the operations and the semantics of a class are represented by types T = (S,O,Σ). In
this case, the modelling of objects includes the association of objects with classesC and
their corresponding value type T and reference typeR. Therefore, after classification the
structure of objects is represented by

o = (i, {(C, T, v)}, {(C,R, ref)}, {(T,meth)}).

The recognized design methodologies vary in the scale of information modelled in
the types. If objects in the classes can be distinguished by their values, then the iden-
tifiers can be omitted and we use value-oriented modelling. If this is not the case, we
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use an object-oriented approach. In the object-oriented approach, different approaches
can be distinguished. If all objects are identifiable by their value types or by references
to identifiable objects, then the database is called value-representable. In this case, the
database can also be modelled by the value-oriented approach, and a mapping from the
value-representable scheme to a value-oriented scheme can be generated. If the database
is not value-representable, then we have to use object identifiers. In this case either the
identifier handling should be made public or else the databases cannot be updated and
maintained. Therefore, value-representable databases are of special interest. Thus, we
can distinguish database models as displayed in Figure 1.

database

value-oriented database object-oriented database

value-representable database identifier-based database

value-based database non-value-based database

Fig. 1. Classification of Database Models

It has been shown in [BT99, Sch94] that the concept of the object identifier can only
be treated on the basis of higher-order epistemic and intuitionistic logics. Furthermore,
identification by identifiers is different from identification by queries, equational logics
and other identification methods. For this reason, the concept of the object identifier is
far more complex than wanted and cannot be consistently and equivalently treated in
database systems. Furthermore, methods can be generically derived from types only in
the case if all objects are value-representable. Value-representable cyclic type systems
require topos semantics[ST99] what is usually too complex to be handled in database
systems. It can be shown that value-representable, non-cyclic type systems can be rep-
resented by value-oriented models.

2.5 XML - Couleur De Rose and Pitfalls

XML document specification and playout is based on a number of standards and co-
standards:

XML documents are based on trees of elementary documents which are tagged by a
begin and end delimiter.

Document schema specification is either based on
DTD specification which supports an entity-relationship modelling,
RDF schema reuse which allows to include other specifications, or
Schema specification which allows object-oriented modelling.
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XLink, XPointer, XPath and XNamespace support a flexible parsing and playout
enabling documents to be extended by foreign sources which might be accessible.

XSL supports filtering, union and join of documents.
XML query languages add query facilities to XML document suites.
XML applications are supported by a large variety of application standards such as

BizTalk and LOM.

This layering has a number of advantages and a number of disadvantages. The main
advantage of this approach is that almost any object set can be represented by an XML
document suite. XML documents may be well-formed. In this case they are semi-struc-
tured and may be represented by A-trees which are defined by induction as follows

– each σ ∈ A is a tree, and
– if σ ∈ Σ and t1, ...., tn are trees then σ(t1, ..., tn) is a tree.

The set Dom(t) ⊆ N ∗ of all nodes of a tree t = σ(t1, ..., tn) is given by:

Dom(t) = {ε} ∪ {ui|i ∈ {1, ..., n}, u ∈ Dom(ti)}
where ε is the root, ui is the ith child of u, and

labt(u) is the label of u in t.
The disadvantages of XML steam from the generality of the approach. For instance,

parsing of XML document sets must be supported by machines which are not less com-
plex than Turing machines, i.e., tree automata
M = (Q,Σ, δ, (Iσ)σ∈Σ , F ), F ⊆ Q, δ : Q×Σ → 2Q∗

.
A run λ : Dom(t)→ Q specifies for each leave node v : ε ∈ δ(λ(u1), labt(u)) and for
each node v with p children : λ(u1)λ(u2)...λ(up) ∈ δ(λ(u), labt(u)).
The run accepts the tree t if λ(ε) ∈ F .

XML document suites have, however, a number of other properties: they are par-
tial and based on list semantics. Their implication is neither compact not monotone nor
closed. Therefore, the axiomatisation of XML constraints is more difficult compared
with other database models. For instance, already the definition of keys and functional
dependencies becomes a nightmare. The treatment of cardinality constraints is more
difficult than for ER models. For instance, the definitions of [AFL02, BDF+01] are in-
complete since they do not consider the list-to-set axiom.

XML documents provide a universal structuring mechanism. [Kle07] has developed
a modelling approach that limits the pitfalls of XML specification.

Finite implication of path constraints is co-r.e. complete and implication is r.e. com-
plete for semi-structured models. The implication problem for key constraints is harder
than in the relational and ER case. It involves implication on regular path expressions
which is known to be PSPACE-hard. The satisfiability problem for key constraints and
referential inclusion constraints becomes undecidable in the presence of DTD’s. For this
reason, simpler language must be used for specification of constraints in XML.

3 Overuse and Misuse of the Notion of Semantics

Nowadays semantics is viewed in a large variety of ways. Some of them are [HR04]:
semantic web, semantics as a metamodel, semantics as context, semantics as behaviour,
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semantics as being executable, semantics as the meaning of individual constructs, se-
mantics as mathematical notation, and semantics as mappings. All these views have their
own pitfalls and do not convey with the notion of semantics. They are mainly syntactic
types that ‘cry out for’ [Bjø06] a semantic explanation.

3.1 Semantification of Semantic Web

The “Semantic Web” is mainly based on syntax and partially uses micro-semantics of
wordings. Semantics is used in the sense of rudimentary lexical semantics. Rudimen-
tary lexical semantics must be enhanced by explicit definitions of symbols or words used.
These definitions can be combined with the name spaces that provide a source for the
lexical units used in a web document. The semantification project of the group headed
by J. Pokorny at Charles University Prague aims in enhancing the ontology based an-
notation in XML documents by a semantic repository, by user profiles and by portfolio
management.

Web documents should be enhanced by context [KSTZ03] or meta-data similar
to the OpenCyc project. Lexical units may be characterised by time(absolut, type),
place(absolut, type), culture, sophistification/security, topic/usage, granularity, modal-
ity/disposition/epistemology, argument preferences, justification, and lets [Len02].

The vocabulary of name spaces or of ontologies is not just a collection of words
scattered at random throughout web documents. It is at least partially structured, and at
various levels. There are various modes and ways of structuring, e.g., by branching, taxo-
nomic or meronymic hierarchies or by linear bipole, monopolar or sequenced structures.

Ontologies are often considered to be the silver bullet for web integration. They are
sometimes considered to be an explicit specification of conceptualisation or to be a
shard understanding of some domain of interest that can be communicated across people
and computers. We should however distinguish a variety of ontologies such as generic,
semiotic, intention/extension, language, UoD, representational, context and abstraction
ontologies.

3.2 Separation of Semantics and Behaviour

A common misconception in computer science is confusion of semantics and behaviour.
Behaviour is an aspect in systems description. It is also based on syntax, semantics and
pragmatics. We use dynamic algebraic structures of a certain signature for the description
of behaviour.

Typical aspects concentrate either on models describing structural properties or evo-
lution or the collaboration among actors or the distribution or architecture of the system.
Figure 2 surveys aspects we might consider.

Aspects describe different separate concerns.

Structuring of a database application is concerned with representing the database struc-
ture and the corresponding static integrity constraints.

Behaviour of a database application is specified on the basis of processes and dynamic
integrity constraints.

Distribution of information system components is specified through explicit specifica-
tion of services and exchange frames.
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Fig. 2. Description, prescription and design aspects of the WIS

Interactivity is provided by the system on the basis of foreseen stories for a number
of envisioned actors and is based on media objects which are used to deliver the
content of the database to users or to receive new content.

This understanding has led to the co-design approach to modelling by specification
structuring, behaviour, distribution, and interactivity. These four aspects of modelling
have both syntactic and semantic elements.

3.3 Semantics Illustration through Diagrams

The Unified Modelling Language UML consists of more than 100 different types of
diagrams. These diagrams provide some illustration for syntactic constructs. They are
partially semantically founded. Their meaning is often only given by an abstract descrip-
tion of the intended meaning or by an ad-hoc polymorphism of constructs.

Diagrams make use of pictured elements. These elements are used in diagrams in very
different ways and meanings. As an example one might compare the meaning of the ar-
row or the edge in different UML diagrams. The meaning of these elements is implicitly
defined by the kind of diagram. The same problem can be observed for assignment of
cardinality constraints to edges in ER diagrams despite the differences between partici-
pation and look-through semantics. Consistency of elements used in different diagrams
is still an open issue.

Diagrams provide a simple way for visual representation of structures, functions, in-
teraction or distribution. Visualization is, however, not the silver bullet as often marketed.
It may mislead, e.g. by misleading comparisons or by overuse or wrong use of coloring
schemes that vary in cultural environments. Representation of complex structures, e.g.,
in medicine cannot be entirely based on visual structures. Reasoning on representations,
e.g., in UML diagrams is not yet supported. Diagrams may misguide as well as values
without context.

The most important drawback of diagrams is their spatial restriction due to the re-
quirement that diagrams must be surveyable. This requirements causes a separation
of content into an ensemble of diagrams. The consistency of diagrams must thus be
explicitly handled. So far there is no theory that allows to handle consistency in dia-
gram ensembles such as UML diagram ensembles.
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4 Contributions of SDKB to Data and Knowledge Base Semantics

This volume continues the ‘Semantics in Databases’ workshops. The first workshop has
been published in Lecture Notes in Computer Science 1358 and the second in Lecture
Notes in Computer Science 2582. The third workshop was collocated with EDBT 2008.
We are thankful to the EDBT organisers in Nantes. At the workshop six papers selected
from 19 papers that have been submitted. Two contributions that reflect the topic of
semantics in databases and in knowledge bases have also been invited to this workshop.
This volumes additionally contains two invited papers.

Already with the second workshop we realised that the approaches to semantics in
database research and in knowledge base research are similar and may enhance each
other. The introduction [BKST03] surveys different approaches to semantics in database
research and discusses a program to research on database semantics. Most of these re-
search questions as well as the problems in [Tha87, Tha00a, LT98] are still open.

The papers in this volume reflect a variety of approaches to semantics in data and
knowledge bases:

A. Altuna develops a model-theoretic semantics for the formalisation of context in
knowledge bases. The approach accommodates reasoning across the different per-
spectives that may coexist on a particular theory or situation. This approach allows
an explicit distinction between the context and the interpretation for formal seman-
tics as discussed above.

D. W. Archer and L. M. L. Delcambre propose an explicit capture model for data in-
tegration decisions. This approach allows to handle data integration in a similar way
as users do while learning the content of a document ensemble. Users evolve their
understanding by restructuring, copying, pasting, abstracting and extending them
by their context. The paper shows how this integration of lexical, logical, prototype
and dynamic semantics supports entity resolution (record linkage, de-duplication,
data identification) and de-resolution.

R. Caballero and Y. Garcı́a-Ruiz, and F. Sáenz-Pérez develop a theoretical frame-
work for debugging Datalog programs based on the ideas of declarative debugging.
Whenever a user detects an unexpected answer for some query the debugger allows
to track the cause for missing and wrong answers. The debugging mechanism is
based on computation graphs and debugging circuits.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati
and M. Ruzzi introduce a complete system for data integration that uses an ontology
and description logic as the main vehicle. Data integration supports a uniform access
to a set of heterogeneous data sources and does not require that the user knows im-
plementation details. Lexical semantics can efficiently (LogSpace) be combined in
an with a conceptual architecture, comprising a global schema, the source schema,
and the mapping between the source and the global schema.

F. A. Ferrarotti and J. M. Turull Torres invesitgate the connection between the con-
cept of relational complexity and the restricted second-order logic SOω. This logic
allows to characterize the relational polynomial-time hierarchy. The existential frag-
ment of SOω captures relational NP. Prenex fragments of SOω exacly corresponds
to the levels of the relational polynomial-time hierarchy.
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S. Hartmann, H. Köhler, S. Link, T. Trinh, and J. Wang survey the variety of pro-
posals for the notion of keys in XML documents. Typically XML documents are
defined by application of list type constructor to basic types. Therefore, semantics
is different from the case of typical database modelling languages. Additionally,
XML documents have optional components. The notion of the key must thus be re-
defined. There are several notions for keys in XML documents. They are partially
incomparable, differ in their properties and expressive power.

Stephen J. Hegner develops a general technique for establishing that the translation
of a view update defined by constant complement is independent of the choice
of complement. Views provide partial information. The treatment of semantics by
views has been one of the open problems in [BKST03]. It is shown that the decom-
position mapping for the pair of views is required not only to be bijective on states
but also on the sentences which define the information content of the component
views.

Gabriele Kern-Isberner, Matthias Thimm and Marc Finthammer develop a theory
of truth values beyond classical two-valued semantics based on degrees of plausibil-
ity that express how strongly a formula is supported. Conditionals serve as a basic
means to encode plausible, intensional relationships in the form of general rules.
An algebraic theory of conditional structures is presented which provides the formal
machinery to make use of conditionals for inference and belief revision in different
frameworks. The approach is used for the development of a theory of qualitative
knowledge discovery.

N. Mohajerin and N. Shiri use query rewriting techniques for the development of a
top-down approach for answering queries using only answers to views. On the basis
a graph-based model for conjunctive queries and views, the algorithm proposed in
the paper efficiently generates maximally contained rewritings which are in general
less expensive to evaluate, compared to the bottom-up algorithms, without requir-
ing post-processing. Existing solutions that follow a bottom-up approach require a
post-processing phase.

Héctor Pérez-Urbina, Boris Motik and Ian Horrocks develop a resolution-based al-
gorithm for rewriting conjunctive queries over TBoxes in Description Logic DL-
Lite+. The algorithm produces an optimal rewriting when the input ontology is
expressed in the language DL-Lite. The complexity is NLogSpace w.r.t. data com-
plexity. Combining this result with the lower bound it is concluded that query an-
swering in DL-Lite+ is NLogSpace-complete.
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Abstract. The goal of data integration is to provide a uniform access to a set of
heterogeneous data sources, freeing the user from the knowledge about where the
data are, how they are stored, and how they can be accessed. One of the outcomes
of the research work carried out on data integration in the last years is a clear
conceptual architecture, comprising a global schema, the source schema, and the
mapping between the source and the global schema. In this paper, we present a
comprehensive approach to, and a complete system for, ontology-based data inte-
gration. In this system, the global schema is expressed in terms of a TBox of the
tractable Description Logics DL-LiteA, the sources are relations, and the map-
ping language allows for expressing GAV sound mappings between the sources
and the global schema. The mapping language has specific mechanisms for ad-
dressing the so-called impedance mismatch problem, arising from the fact that,
while the data sources store values, the instances of concepts in the ontology are
objects. By virtue of the careful design of the various languages used in our sys-
tem, answering unions of conjunctive queries can be done through a very efficient
technique (LOGSPACE with respect to data complexity) which reduces this task
to standard SQL query evaluation. We also show that even very slight extensions
of the expressive abilities of our system lead beyond this complexity bound.

1 Introduction

The goal of data integration is to provide a uniform access to a set of heterogeneous
data sources, freeing the user from the knowledge about where the data are, how they
are stored, and how they can be accessed. The problem of designing effective data
integration solutions has been addressed by several research and development projects
in the last years. Starting from the late 90s, research in data integration has mostly
focused on declarative approaches (as opposed to procedural ones) [32,26]. One of the
outcomes of this research work is a clear conceptual architecture for (mediator-based1)
data integration. According to this architecture [26], the main components of a data
integration system are the global schema, the sources, and the mapping. Thus, a data
integration system is seen as a triple 〈G,S,M〉, where:

1 Other architectures, e.g. [4], are outside the scope of this paper.
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– G is the global schema, providing both a conceptual representation of the appli-
cation domain, and a reconciled, integrated, and virtual view of the underlying
sources.

– S is the source schema, i.e., the schema of the sources where real data are stored.
– M is the mapping between G and S, constituted by a set of assertions establish-

ing the connection between the elements of the global schema and those of the
source schema. Two basic approaches have been proposed in the literature. The
first approach, called global-as-view (or simply GAV) [11,18,20,31], focuses on
the elements of the global schema, and associates to each of them a view (query)
over the sources. On the contrary, in the second approach, called local-as-view (or
simply LAV) [10,15,23], the focus is on the sources, in the sense that a view (query)
over the global schema is associated to each of them.

We use the term “data integration management system” to denote a software tool
supporting the conceptual architecture described above. Among the various services to
be provided by a data integration management system, we concentrate on query an-
swering: Queries are posed in terms of the global schema, and are to be answered by
suitably reasoning on the global schema, and exploiting the mappings to access data at
the sources.

Data integration is still one of the major challenges in Information Technology. One
of the reasons is that large amounts of heterogeneous data are nowadays available within
an organization, but these data have been often collected and stored by different appli-
cations and systems. Therefore, the need of accessing data by means of flexible and
unified mechanisms is becoming more and more important. On the other hand, cur-
rent commercial data integration tools have several drawbacks. In particular, none of
them realizes the goal of describing the global schema independently from the sources.
In particular, these tools do not allow for specifying integrity constraints in the global
schema, and this implies that the global schema is a sort of data structure for accom-
modating a reconciled view of the source data, rather than a faithful description of the
application domain. It follows that current state-of-the-art data integration tools do not
support the conceptual architecture mentioned above.

In this paper, we present a comprehensive approach to, and a complete management
system for ontology-based data integration. The system, called MASTRO-I, is based on
the following principles:

– The system fully adheres to the conceptual architecture developed by the scientific
community.

– The global schema is specified in terms of an ontology, specifically in terms of
a TBox expressed in a tractable Description Logics, namely DL-LiteA. So, our
approach conforms to the view that the global schema of a data integration system
can be profitably represented by an ontology, so that clients can rely on a shared
conceptualization when accessing the services provided by the system.

– The source schema is the schema of a relational database. In fact, such a schema
may result from the federation of a set of heterogeneous, possibly non-relational,
data sources. This can be realized by means of a data federation tool, which
presents, without materializing them, physical data sources to MASTRO-I as they
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were a single relational database, obtained by simply transforming each source into
a set of virtual relational views and taking their union.

– The mapping language allows for expressing GAV sound mappings between the
sources and the global schema. A GAV sound mapping specifies that the exten-
sion of a source view provides a subset of the tuples satisfying the corresponding
element of the global schema.
Moreover, the mapping language has specific mechanisms for addressing the so-
called impedance mismatch problem. This problem arises from the fact that, while
the data sources store values, the instances of concepts in the ontology (global
schema) are objects, each one denoted by an identifier (e.g., a constant in logic),
not to be confused with any data item.

MASTRO-I is based on the system QUONTO [1], a reasoner for DL-LiteA, and is
coupled with a data federation tool that is in charge of federating physical data sources2.

We point out that our proposal is not the first one advocating the use of ontologies
in data integration (see, for example, [2,12]). However, to the best of our knowledge,
MASTRO-I is the first data integration management system addressing simultaneously
the following aspects:

– providing a solution to the impedance mismatch problem;
– answering unions of conjunctive queries posed to the global schema according to a

method which is sound and complete with respect to the semantics of the ontology;
– careful design of the various languages used in the system, resulting in a very effi-

cient technique (LOGSPACE with respect to data complexity), which reduces query
answering to standard SQL query evaluation over the sources.

In order to demonstrate feasibility and efficiency of the MASTRO-I approach to data
integration, we also describe in this paper an experimentation carried out over a real-
world application scenario. More precisely, we discuss some experiments in which we
make use of an ontology benchmark modeling the domain of universities to specify
the global schema of the integration system, and connect it, via MASTRO-I mappings,
to real data stored at different information systems owned by SAPIENZA University of
Rome.

Although in the present work we make use of GAV mappings, the presence of
constraints expressed in a rich ontology language in the global schema, makes query
answering in our setting more similar to what is carried out in LAV data integration
systems rather than in GAV systems. Indeed, while in general GAV systems have been
realized as (simple) hierarchies of wrappers and mediators, query answering in LAV can
be considered a form of reasoning in the presence of incomplete information, and thus
significantly more complex. Early systems based on this approach, like Information
Manifold (IM) [28,29], or INFOMASTER [16,19], have implemented algorithms [28]
for rewriting queries using views, where the views are the ones specified through the

2 The current implementation of MASTRO-I makes use of Websphere Federation Server,
the IBM tool for data federation (http://www-306.ibm.com/software/data/
integration/federation server/). However, MASTRO-I can be coupled with any
data federation tool based on SQL.

http://www-306.ibm.com/software/data/integration/federation_server/
http://www-306.ibm.com/software/data/integration/federation_server/
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(conjunctive) queries in the mappings. The relationship between LAV and GAV data in-
tegration systems is explored in [5], where it is indeed shown that a LAV system can be
converted into a GAV one by introducing suitable inclusion dependencies in the global
schema. If no functionality assertions are present in the global schema, such inclusion
dependencies can then be dealt with in a way similar to what is done here for concept
and role inclusions in DL-LiteA. We show in this paper, however, that this is no longer
possible in the presence of functionality assertions.

Indeed, one might wonder whether the expressive power of the data integration
framework underlying MASTRO-I can be improved. We answer this question by show-
ing that even very slight extensions of the expressive abilities of MASTRO-I in mod-
eling the three components of a data integration system lead beyond the LOGSPACE

complexity bound.
We finally point out that MASTRO-I addresses the problem of data integration, and

not the one of schema or ontology integration. In other words, MASTRO-I is not con-
cerned with the task of building the ontology representing the global schema starting
from the source schema, or from other ontologies. This task, which is strongly related
to other important problems, such as database schema integration [3], and ontology
alignment, matching, merging, or integration (see, e.g., [17]), are outside the scope of
MASTRO-I.

The paper is organized as follows. In Section 2, we describe in detail the various
components of the data integration framework adopted in MASTRO-I. In Section 3,
we provide a description of the semantics of a data integration system managed by
MASTRO-I. In Section 4, we illustrate the basic characteristics of the query answering
algorithm. In Section 5, we present our experiments. Finally, in Section 6 we study
possible extensions to the MASTRO-I framework, and in Section 7 we conclude the
paper.

2 The Data Integration Framework

In this section we instantiate the conceptual architecture for data integration systems
introduced in Section 1, by describing the form of the global schema, the source schema,
and the mapping for data integration systems managed by MASTRO-I.

2.1 The Global Schema

Global schemas managed by MASTRO-I are given in terms of TBoxes expressed in
DL-LiteA [30], a DL of the DL-Lite family. Besides the use of concepts and roles,
denoting sets of objects and binary relations between objects, respectively, DL-LiteA
allows one to use value-domains, a.k.a. concrete domains, denoting unbounded sets
of (data) values, and concept attributes, denoting binary relations between objects and
values3. In particular, the value-domains that we consider here are those corresponding
to unbounded (i.e., value-domains with an unbounded size) RDF data types, such as
integers, real, strings, etc.

3 In fact, all results presented in [30] and exploited in the present paper can be extended to
include role attributes, user-defined domains, as well as inclusion assertions over such domains
(see also [7]).
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To describe DL-LiteA, we first introduce the DL DL-LiteFR, which combines the
main features of two DLs presented in [8], called DL-LiteF and DL-LiteR, respectively.
We use the following notation:

– A denotes an atomic concept,B a basic concept, C a general concept, and �C the
universal concept;

– E denotes a basic value-domain, i.e., the range of an attribute, T1, . . . , Tn denote
the n pairwise disjoint unbounded RDF data types used in our logic, and F denotes
a general value-domain, which can be either an unbounded RDF data type Ti or
the universal value-domain�D;

– P denotes an atomic role, Q a basic role, and R a general role;
– U denotes an atomic attribute, and V a general attribute.

Given an attribute U , we call domain of U , denoted by δ(U), the set of objects that U
relates to values, and we call range of U , denoted by ρ(U), the set of values related to
objects by U .

We are now ready to define DL-LiteFR expressions as follows.

– Basic and general concept expressions:

B ::= A | ∃Q | δ(U) C ::= B | ¬B

– Basic and general value-domain expressions:

E ::= ρ(U) F ::= �D | T1 | · · · | Tn

– General attribute expressions:

V ::= U | ¬U

– Basic and general role expressions:

Q ::= P | P− R ::= Q | ¬Q

A DL-LiteFR TBox allows one to represent intensional knowledge by means of as-
sertions of the following forms:

– Inclusion assertions:

B � C concept inclusion assertion
Q � R role inclusion assertion
E � F value-domain inclusion assertion
U � V attribute inclusion assertion

A concept inclusion assertion expresses that a (basic) concept B is subsumed by a
(general) concept C. Analogously for the other types of inclusion assertions.

– Functionality assertions on atomic attributes or basic roles:

(funct I) functionality assertion

where I denotes either an atomic attribute or a basic role.
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DL-LiteA TBoxes are DL-LiteFR TBoxes with suitable limitations in the combi-
nation of DL-LiteFR TBox assertions. To describe such limitations we first introduce
some preliminary notions.

An atomic attribute U (resp., an atomic role P ) is called a functional property in a
TBox T , if T contains a functionality assertion (funct U) (resp., either (funct P ) or
(funct P−)). Then, an atomic attribute is called primitive in T , if it does not appear
positively in the right-hand side of an attribute inclusion assertion of T , i.e., an atomic
attribute U1 is primitive in T if there does not exist an atomic attribute U2 such that
U2 � U1 is asserted in T . Similarly, an atomic role is called primitive in T if it or its
inverse do not appear positively in the right-hand side of a role inclusion assertion of
T , i.e., an atomic role P is primitive in T if there does not exist a basic roleQ such that
neitherQ � P nor Q � P− is asserted in T .

Then, a DL-LiteA TBox is a DL-LiteFR TBox T satisfying the condition that every
functional property in T is primitive in T .

Roughly speaking, in our logic, functional properties cannot be specialized, i.e., they
cannot be used positively in the right-hand side of role/attribute inclusion assertions.
As shown in [30], reasoning over a DL-LiteA knowledge base (constituted by a TBox
and an ABox, which specifies the instances of concept and roles) is tractable. More
precisely, TBox reasoning is in PTIME and query answering is in LOGSPACE w.r.t.
data complexity, i.e., the complexity measured in the size of the ABox only (whereas
query answering for DL-LiteFR is PTIME-hard [8]). Thus, DL-LiteA presents the same
computational behavior of all DLs of the DL-Lite family, and therefore is particularly
suited for integration of large amounts of data.

2.2 The Source Schema

The source schema in MASTRO-I is assumed to be a flat relational database schema,
representing the schemas of all the data sources. Actually, this is not a limitation of the
system, since the source schema coupled with MASTRO-I can be the schema managed
by a data federation tool. So, the data federation tool is in charge of interacting with
data sources, presenting them to MASTRO-I as a single relational database schema,
obtained by wrapping physical sources, possibly heterogeneous, and not necessarily
in relational format. Furthermore, the data federation tool is in charge of answering
queries formulated over the source schema, by suitably transforming and asking them
to the right sources, finally combining the single results into the overall answer. In other
words, the data federation tool makes MASTRO-I independent from the physical nature
of the sources, by providing a logical representation of them (physical independence),
whereas MASTRO-I is in turn in charge of making all logical aspects transparent to the
user, by maintaining the conceptual global schema separate from the logical federated
schema, and connecting them via suitable mappings (logical independence).

2.3 The Mapping

The mapping in MASTRO-I establishes the relationship between the source schema and
the global schema, thus specifying how data stored at the sources are linked to the
instances of the concepts and the roles in the global schema. To this aim, the mapping
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specification takes suitably into account the impedance mismatch problem, i.e., the mis-
match between the way in which data is (and can be) represented in a data source, and
the way in which the corresponding information is rendered through the global schema.

The MASTRO-I mapping assertions keep data value constants separate from object
identifiers, and construct identifiers as (logic) terms over data values. More precisely,
object identifiers in MASTRO-I are terms of the form f(d1, . . . , dn), called object terms,
where f is a function symbol of arity n > 0, and d1, . . . , dn are data values stored at the
sources. Note that this idea traces back to the work done in deductive object-oriented
databases [22].

We detail below the above ideas. The mapping in MASTRO-I is specified through a
set of mapping assertions, each of the form

Φ(v) � S(w)

where

– Φ(v), called the body of the mapping, is a first-order logic (FOL) query of arity
n > 0, with distinguished variables v, over the source schema S (we will write
such query in the SQL syntax), and

– P (w), called the head, is an atom where S can be an atomic concept, an atomic
role, or an atomic attribute occurring in the global schema G, and w is a sequence
of terms.

We define three different types of mapping assertions:

1. Concept mapping assertions, in which the head is a unary atom of the form
A(f(v)), where A is an atomic concept and f is a function symbol of arity n;

2. Role mapping assertions, in which the head is a binary atom of the form
P (f1(v′), f2(v′′)), where P is an atomic role, f1 and f2 are function symbols of
arity n1, n2 > 0, and v′ and v′′ are sequences of variables appearing in v;

3. Attribute mapping assertions, in which the head is a binary atom of the form
U(f(v′), v′′ : Ti), where U is an atomic attribute, f is a function symbol of ar-
ity n′ > 0, v′ is a sequence of variables appearing in v, v′′ is a variable appearing
in v, and Ti is an RDF data type.

In words, such mapping assertions are used to map source relations (and the tuples
they store), to concepts, roles, and attributes of the ontology (and the objects and the
values that constitute their instances), respectively. Note that an attribute mapping also
specifies the type of values retrieved by the source database.

Example 1. Consider the following mapping assertions:

M1 : SELECT S CODE � Student(st(S CODE))
FROM STUDENTS
WHERE DOB <= ’1990/01/01’

M2 : SELECT S CODE,S NAME � name(st(S CODE),S NAME : xsd:string)
FROM STUDENTS
WHERE DOB <= ’1990/01/01’

M3 : SELECT S CODE,C CODE � takesCourse(st(S CODE), co(C CODE))
FROM COURSES
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Such assertions relate a source schema containing the relations STUDENTS and
COURSES to a global schema containing the atomic concept Student, the atomic at-
tribute name, and the atomic role takesCourse. M1 is a concept mapping assertion that
selects from the table STUDENTS the code (variable S CODE) of students whose date
of birth (variable DOB) is after December 31, 1989, and for each such code builds, by
means of the function symbol st, an object term representing an instance of the con-
cept Student. M2 is an attribute mapping assertion that, besides the codes, selects also
the names (variable S NAME) of the students born after December 31, 1989, and for
each selected tuple builds a pair constituted by a term of the form st(S CODE), which
is as in assertion M1, and a constant representing the name of the student. To such a
constant M2 assigns the data type xsd:string. Finally, M3 is a role mapping as-
sertion relating the relation COURSES to the global atomic role takesCourse. More
precisely, from each pair constituted by the code of a student (variable S CODE) and
the code of a course she takes (variable C CODE), M3 builds a pair of object terms
(st(S CODE),co(C CODE)), where co is a function symbol used to build object terms
representing courses taken by students.

We point out that, in fact, the body of each mapping assertion is never really evalu-
ated in order to extract values from the sources to build instances of the global schema,
but rather it is used to unfold queries posed over the global schema, and thus rewriting
them into queries posed over the source schema (cf. Section 4). Also, we notice that the
mapping designer has to specify a correct DL-LiteA data type for the values extracted
from the source, in order to guarantee coherency of the system. This aspect is detailed
in the next section.

3 Semantics

We now illustrate the semantics of a data integration system managed by MASTRO-I.
Let J = 〈G,S,M〉 be a data integration system. The general idea is to start with

a database D for the source schema S, i.e., an extension of the data sources, called
the source database for J . The source database D has to be coherent with the typing
assertions that implicitly appears in the mapping M. More precisely, this means that,
for every attribute mappingΦ(v) � U(f(v′), v′′ : Ti), the values for v′′ extracted from
D are of type Ti. In the rest of this paper, we always assume that the source database is
coherent with the mapping.

Given a source databaseD, we define the semantics of J as the set of interpretations
for G that both satisfy the TBox assertions of G, and satisfy the mapping assertions in
M with respect to D. This informal definition makes use of different notions that we
detail below.

– First, the notion of interpretation for G is the usual one in DL. An interpretation
I = (∆I , ·I) for G consists of an interpretation domain ∆I and an interpretation
function ·I .∆I is the disjoint union of the domain of objects∆I

O , and the domain of
values∆I

V , while the interpretation function ·I assigns the standard formal meaning
to all expressions and assertions of the logic DL-LiteA (see [7]). The only aspect
which is not standard here is the need of dealing with objects denoted by terms (see
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previous section). To this end, we now introduce two disjoint alphabets, called ΓO

and ΓV , respectively. Symbols in ΓO are called object terms, and are used to denote
objects, while symbols in ΓV , called value constants, are used to denote data values.
More precisely, ΓO is built starting from ΓV and a set Λ of function symbols of any
arity (possibly 0), as follows: If f ∈ Λ, the arity of f is n, and d1, . . . , dn ∈ ΓV ,
then f(d1, . . . , dn) is a term in ΓO, called object term. In other words, object terms
are either functional terms of arity 0, called object constants, or terms constituted
by a function symbol applied to data value constants. We are ready to state how
the interpretation function ·I treats ΓV and ΓO: ·I assigns a different value in ∆I

V

to each symbol in ΓV , and a different element of ∆I
O to every object term (not

only object constant) in ΓO. In other words, DL-LiteA enforces the unique name
assumption on both value constants and object terms.

– To the aim of describing the semantics of mapping assertions with respect to a
database D for the source schema S, we first assume that all data values stored
in the database D belong to ΓV

4. Then, if q is a query over the source schema S,
we denote by ans(q,D) the set of tuples obtained by evaluating the query q over
the database D (if q has no distinguished variables, then ans(q,D) is a boolean).
Finally, we introduce the notion of ground instance of a formula. Let γ be a FOL
formula with free variables x = (x1, . . . , xn), and let s = (s1, . . . , sn) be a tuple
of elements in ΓV ∪ ΓO. A ground instance γ[x/s] of γ is obtained from γ by
substituting every occurrence of xi with si.
We are now ready to specify the semantics of mapping assertions. We say that an
interpretation I = (∆I , ·I) satisfies the mapping assertion Φ(v) � S(w) with
respect to D, if for every ground instance

Φ[v/s] � S[v/s]

of Φ(v) � S(w), we have that ans(Φ[v/s], D) = true implies S[v/s]I = true,
where, for a ground atom S(t), with t = (t1, . . . , tn) a tuple of terms, we have
that S(t)I = true if and only if (tI1 , . . . , t

I
n) ∈ pI . Note that the above definition

formalizes the notion of sound mapping, as it treats each mapping assertion as an
implication.

– With the above notion in place, we define the semantics of J with respect to D as
follows:

semD(J ) = { interpretation I | I satisfies all assertions in G andM wrtD }

We say that J is satisfiable withe respect theD if semD(J ) 
= ∅.
Among the various reasoning services that can be considered over a data integration

system, in this paper we are interested in the problem of answering unions of conjunc-
tive queries (UCQs) posed to the global schema. The semantics of query answering is
given in terms of certain answers to the query, defined as follows. Given a data integra-
tion system J = 〈G,S,M〉, and a database D for S, the set of certain answers to the
query q(x) over G with respect to D (denoted by cert(q,J , D)) is the set of all tuples
t of elements of ΓV ∪ ΓO such that q[x/t] is true in every I ∈ semD(J ).

4 We could also introduce suitable conversion functions in order to translate values stored at the
sources into value constants in ΓV , but we do not deal with this issue here.
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4 Query Answering

In this section, we sketch our query answering technique (more details can be found
in [30]). Consider a data integration system J = 〈G,S,M〉 and a database D for S,
and assume that J is satisfiable with respect toD, i.e., semD(J ) 
= ∅.

We start with the following observation. Suppose we evaluate (over D) the queries
in the left-hand sides of the mapping assertions, and we materialize accordingly the
corresponding assertions in the right-hand sides. This would lead to a set of ground
assertions, that can be considered as a DL-Lite ABox5, denoted by AM,D. It can be
shown that query answering over J andD can be reduced to query answering over the
DL-LiteA knowledge base constituted by the TBox G and the ABox AM,D. However,
due to the materializion of AM,D, the query answering algorithm resulting from this
approach would be polynomial in the size ofD. On the contrary, our idea is to avoid any
ABox materialization, but rather answerQ by reformulating it into a new query that can
be afterwards evaluated directly over the database D. The resulting query answering
algorithm is constituted by four steps, which are called rewriting, filtering, unfolding
and evaluation, and are described in the following.

4.1 Rewriting

Given a UCQ Q over a data integration system J = 〈G,S,M〉, and a source database
D for J , the rewriting step computes a new UCQ Q′ over J , where the assertions of
G are compiled in. In computing the rewriting, only inclusion assertions of the form
B1 � B2, Q1 � Q2, and U1 � U2 are taken into account, where Bi, Qi, and Ui,
with i ∈ {1, 2}, are a basic concept, a basic role and an atomic attribute, respectively.
Intuitively, the query Q is rewritten according to the knowledge specified in G that
is relevant for answering Q, in such a way that the rewritten query Q′ is such that
cert(Q′, 〈∅,S,M〉, D) = cert(Q,J , D), i.e., the rewriting allows to get rid of G.

Example 2. Consider a data integration system J = 〈G,S,M〉 where G is DL-LiteA
TBox comprising the concept inclusion assertion Student � ∃takesCourse, and con-
sider the queryQ(x) :− takesCourse(x, y) (written in Datalog syntax), which is asking
for individuals that take (at least) a course. The output of the rewriting step is the fol-
lowing UCQ Q′ (written in Datalog syntax):

Q′(x) :− takesCourse(x, y).
Q′(x) :− Student(x).

Since the global schema says that each student takes at least a course, the queryQ′ asks
both for individuals that take a course and for individuals that are students. Then, we
can answer Q′ over J by disregarding the inclusion assertions in G, and we get the
same result we got by answering Q over J . In other words, whatever is the underlying
source databaseD, we have that cert(Q′, 〈∅,S,M〉, D) = cert(Q,J , D).

5 In DL jargon, an ABox is a set of membership assertions, i.e., assertions stating which are the
instances of the concepts and the roles defined in the corresponding TBox.
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We refer the reader to [30,9] for a formal description of the query rewriting algo-
rithm used by MASTRO-I and for a proof of its soundness and completeness. We only
notice here that the rewriting procedure does not depend on the source database D,
runs in polynomial time in the size of G, and returns a query Q′ whose size is at most
exponential in the size of Q.

4.2 Filtering

Let Q′ be the UCQ produced by the rewriting step above. In the filtering step we take
care of a particular problem that the disjuncts, i.e., conjunctive queries, in Q′ might
have. Specifically, a conjunctive query cq is called ill-typed if it has at least one join
variable x appearing in two incompatible positions in cq, i.e., such that the TBox G of
our data integration system logically implies that x is both of type Ti, and of type Tj ,
with Ti 
= Tj (remember that in DL-LiteA data types are pairwise disjoint). The purpose
of the filtering step is to remove from the UCQ Q′ all the ill-typed conjunctive queries.
Intuitively, such a step is needed because the query Q′ has to be unfolded and then
evaluated over the source database D (cf. the next two steps of the MASTRO-I query
answering algorithm described below). These last two steps, performed for an ill-typed
conjunctive query might produce incorrect results. Indeed, the set of certain answers
over a satisfiable data integration system for an ill-typed conjunctive query cq is always
empty (cf. Section 3). However, the SQL query that results after the unfolding step (see
below) is sent to the underlying data federation tool that uses its SQL engine for eval-
uating it over the source database, and it might happen that the data value conversions
carried out by the SQL engine make the evaluation of such an SQL query non-empty,
thus incorrectly producing a non-empty set of certain answers for cq. Obviously, this
might produce an incorrect result in all those cases in which cq occurs in the UCQ Q′.
The filtering step, by simply dropping all ill-typed queries fromQ′, solves this problem
and produces a new UCQ Q′′ over J .

Example 3. Consider the boolean conjunctive query

Q :− id(x, z), age(x, z).

where id and age are two atomic attributes, asking if there exists a value constant which
is both the id and the age of a certain individual (e.g., a student). Consider now a data
integration system J = 〈G,M,S〉 where G contains the assertions

ρ(id) � xsd:string
ρ(age) � xsd:integer

specifying that the range of id is xsd:string, and the range of age is
xsd:integer. Obviously, the query Q above is ill-typed, since xsd:string and
xsd:integer are two disjoint data types.

Let us now answer Q over J , and assume that the output of the rewriting step is
Q itself (i.e., the global schema does not contain assertions that cause the rewriting
of Q). If we skipped now the filtering step, the query above would be handed to the
unfolder (see below), which would transform it into an SQL query (according to M).
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Then, its evaluation over some source database D might return some tuples, due to
some data value conversions that make the join specified in Q succeed. In other words,
cert(Q,J , D) might be non-empty and the query might incorrectly be considered true.
The filtering step, instead, simply drops the ill-typed queries from the UCQ to be sent
to the unfolder, which in this example is therefore an empty query. As a consequence,
cert(Q,J , D) is correctly empty.

4.3 Unfolding

Given the UCQ Q′′ over J computed by the filtering step, the unfolding step com-
putes, by using logic programming technology, an SQL query Q′′′ over the source
schema S, that possibly returns object terms. It can be shown [30] that Q′′′ is such
that ans(Q′′′, D) = cert(Q′′, 〈∅,S,M〉, D), i.e., unfolding allows us to get rid ofM.
Moreover, the unfolding procedure does not depend on D, runs in polynomial time in
the size ofM, and returns a query whose size is polynomial in the size of Q′′.

Example 4. Let us now continue Example 2, and assume that M is constituted by the
mapping assertions described in Example 1. It is easy to see that Q′ does not contain
ill-typed queries, and therefore the outut of the filtering step isQ′ itself. Also, it is easy
to see that Q′ has to be unfolded by means of mapping assertions M1 (used to unfold
Q(x) :− takesCourse(x, y)) and M3 (used to unfold Q(x) :− Student(x)). The SQL
query that results from this unfolding is the following:

SELECT CONCAT(’st(’,S CODE,’)’) FROM COURSES
UNION
SELECT CONCAT(’st(’,S CODE,’)’) FROM STUDENTS
WHERE DOB <= ’1990/01/01’

Notice that in the above query we have made use of the SQL function CONCAT6.
Such a function allows us to concatenate strings to construct object terms of the form
st(S CODE). By virtue of this mechanism, the evaluation of the above query over the
source database returns indeed a set of object terms representing individuals (in fact,
students), coherently to what the original queryQ asks for.

4.4 Evaluation

The evaluation step consists in simply delegating the evaluation of the SQL queryQ′′′,
produced by the unfolding step, to the data federation tool managing the data sources.
Formally, such a tool returns the set ans(Q′′′, D), i.e., the set of tuples obtained from
the evaluation ofQ′′′ overD.

4.5 Correctness of Query Answering

It can be shown that the query answering procedure described above correctly com-
putes the certain answers to UCQs. Based on the computational properties of such an
algorithm, we can then characterize the complexity of our query answering method.

6 For simplicity we assume that the underlying data federation tool allows for using CONCAT
with an arbitrary number of arguments.
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Theorem 1. Let J = 〈G,S,M〉 be a MASTRO-I data integration system, and D a
source database for J . Answering a UCQ over J with respect to D can be reduced to
the evaluation of an SQL query over D, and is LOGSPACE in the size ofD.

Finally, we remark that, as we said at the beginning of this section, we have assumed
that the data integration system J is consistent with respect to the database D, i.e.,
semD(J ) is non-empty. Notably, it can be shown that all the machinery we have de-
vised for query answering can also be used for checking consistency of J with respect
toD. Therefore, checking consistency can also be reduced to sending appropriate SQL
queries to the source database [30].

5 Experimentation

In this section, we comment on the results of an experimentation that we have carried
out on a real-world data integration scenario. The main aim of the experimentation is to
test on a case of real and practical interest the MASTRO-I architecture for data integra-
tion, which reflects the fundamental principle of maintaining separate the physical level
of the data sources, which remain autonomous and independent, from the conceptual
representation of the domain of discourse, whose design reflects only the ambit of in-
terest and is in principle independent from the specific data at the sources. To this aim,
we have considered a set of information sources used by different administrative offices
of SAPIENZA University of Rome, and we have used the so-called Lehigh University
Benchmark (LUBM)7 to specify the global schema of our integration system. LUBM
consists of an ontology for modeling universities, and it is a de facto standard for bench-
marking ontology reasoners. Usually, extensional data for the LUBM intensional level
are synthesized in an automatic way, possibly using benchmark generators available for
LUBM. Here, instead, by virtue of the mapping mechanism provided by MASTRO-I,
we are able to connect our specific data sources to the LUBM ontology, which has been
of course designed independently from such data.

5.1 Scenario

As data sources, we consider three legacy relational databases, containing the overall
number of 25 relations, each storing from a few tuples up to 50,000 tuples. We make
use of IBM Websphere Federation Server to federate the above data sources, in such a
way that MASTRO-I can see such sources as a single relational schema (source schema).
As already said, to model the global schema we make use of the LUBM ontology. The
ontology contains concepts for persons, students, professors, publications, courses, etc.,
as well as appropriate relationships for such a universe of discourse. The ontology is
specified in OWL-DL8, and it currently defines 43 classes and 32 properties (including
25 object properties, i.e., roles, and 7 datatype properties, i.e., attributes). Note that, in
order to use the LUBM ontology in MASTRO-I, we rephrased it in DL-LiteA, essentially

7 http://swat.cse.lehigh.edu/projects/lubm/
8 http://www.w3.org/2007/OWL/wiki/OWL Working Group

http://swat.cse.lehigh.edu/projects/lubm/
http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
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capturing all its constructs9, and also enriched it with further TBox assertions modeling
peculiar aspects of the domain not present in the original ontology. For example, we also
considered the role hasExam, to model the courses for which a student has passed the
exam.

Due to space limits, we provide below only a fragment of the DL-LiteA ontology
used in our experiments.

Student � ∃takesCourse ∃takesCourse− � Course
Course � ∃teacherOf− ∃teacherOf � Faculty
Faculty � ∃worksFor ∃worksFor− � University

University � ∃hasAlumnus ∃hasAlumnus− � Student

In words, the assertions in the first column, from top to bottom, respectively say that
each student must take a course (i.e., must be connected by the role takesCourse to a
certain individual), each course is necessarily taught by some individual, each faculty
participates to the role worksFor, each university has at least one alumnus. Assertions in
the second column, from top to bottom, respectively say that individuals in the inverse
of the role takesCourse (resp. the role teacherOf, the inverse of the role worksForUniv,
and the inverse of the role hasAlumnus) must be courses (resp. faculties, universities,
students).

5.2 Testing Query Answering

To show scalability of query answering in MASTRO-I, we tuned our system in such
a way that data stored at the sources resulted into six different source databases of
growing size. Table 1 briefly says how data coming from the information systems of
SAPIENZA University of Rome have been filtered for our experiments.

Table 1. Source databases used for tests

Name DB size Data description
(number of tuples)

DB1 118075 from 1993 to 1995 (restricted to students living in Rome)
DB2 165049 from 1993 to 1995
DB3 202305 from 1993 to 1997 (restricted to students living in Rome)
DB4 280578 from 1993 to 1997
DB5 328256 from 1993 to 1999 (restricted to students living in Rome)
DB6 482043 from 1993 to 1999

We then considered five significant queries over the global schema, and measured the
behavior of MASTRO-I in terms of both the size of the resulting answer sets (i.e., the
number of tuples in the answer to each query), and the overall time that MASTRO-I took
to produce these answer sets. Below we describe each test query (given in DATALOG
notation).

9 We recall that, since DL-LiteA is less expressive than OWL-DL, an OWL-DL ontology cannot
be in general exactly specified in DL-LiteA.
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(a) (b)

Fig. 1. Query answering: (a) Execution time (b) Number of tuples in the answer

– Query 1: It asks for all persons living in Rome

Q1(x) :− Person(x), address(x,’ROMA’).

– Query 2: It asks for the names of all students that take a course, together with the
name of such a course:

Q2(z, w) :− Student(x), name(x, z), takesCourse(x, y), name(y, w).

– Query 3: It asks for all persons that passed at least an exam:

Q3(x) :− Person(x), hasExam(x, y).

– Query 4: It asks for the names of all persons whose address is the same as the
address of the organization for which their advisor works:

Q4(z) :− Person(y), name(y, z), address(y, w), advisor(y, x),
worksFor(x, v), address(v, w).

– Query 5: It asks for all students that take a course, together with the address of the
organization for which the course teacher works:

Q5(x, c) :− Student(x), takesCourse(x, y), teacherOf(z, y),worksFor(z, w),
address(w, c).

The results of our experiments are given in Figure 1, which shows the performance
(execution time) for answering each query w.r.t. the growth of the size of the source
database (Figure 1(a)), and the number of tuples returned by each query for each source
database (Figure 1(b)).

All experiments have been carried out on an Intel Pentium IV Dual Core machine,
with 3 GHz processor clock frequency, equipped with 1 Gb of RAM, under the operat-
ing system Windows XP professional.
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5.3 Discussion

For each query, the execution time comprises the time needed for rewriting and filter-
ing the input query (both rewriting and filtering are executed by the system QUONTO,
which is at the core of MASTRO-I) unfolding the resulting query, and evaluating the un-
folded query over the underlying database (both unfolding and evaluation are delegated
to IBM Websphere Federation Server). We point out that the time needed for query
rewriting and query unfolding is negligible w.r.t. the overall execution time, and that
the major time consuming process is the evaluation of the rewritten and unfolded query
over the source database. This depends both on the number of disjuncts occurring in
the rewritten query (which is a union of conjunctive queries), and the number of source
relations mapped to concepts, roles, and attributes occurring as predicates of the query
atoms. As an example, we provide below the rewriting of Query 2 (expressed in Datalog
notation), for which we measured the worst performance in terms of execution times
(n0 below denotes a fresh existentially quantified variable introduced by the rewriting
process).

Q2(z, w) :− name(y, w), examRating(x, y, n0), name(x, z).
Q2(z, z) :− takesGraduateCourse(x, x), name(x, z).
Q2(z, w) :− name(y, w), takesGraduateCourse(x, y), name(x, z).
Q2(z, w) :− name(y, w), hasExam(x, y), name(x, z).
Q2(z, z) :− examRating(x, x, n0), name(x, z).
Q2(z, z) :− takesCourse(x, x), name(x, z).
Q2(z, z) :− hasExam(x, x), name(x, z).
Q2(z, w) :− name(y, w), takesCourse(x, y), name(x, z).

We notice that MASTRO-I shows good scalability w.r.t. the growth of the size of the
ABox, and that execution time is always limited, even for answering queries that are
rewritten into unions of conjunctive queries with several disjuncts.

6 Extending the Data Integration Framework

In this section we study whether the data integration setting presented above can be
extended while keeping the same complexity of query answering. In particular, we in-
vestigate possible extensions for all the three components 〈G,S,M〉 of the system.

6.1 Extensions to DL-LiteA

With regard to the logic used to express the global schema G, the results in [8] already
imply that it is not possible to go beyond DL-LiteA (at least by means of the usual DL
constructs) and at the same time keep the data complexity of query answering within
LOGSPACE. Here we consider the possibility of removing the unique name assumption
(UNA), i.e., the assumption that, in every interpretation of a data integration system,
both two distinct value constants, and two distinct object terms denote two different do-
main elements. Unfortunately, this leads query answering out of LOGSPACE, as shown
by the following theorem.
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Theorem 2. Let J = 〈G,S,M〉 be a MASTRO-I data integration system extended
by removing the UNA, and D a database for S. Answering a UCQ (in fact, a query
constituted by a single atom) over J with respect toD is NLOGSPACE-hard in the size
ofD.

Proof. We prove the result already for a data integration system in which the global
schema is expressed in DL-LiteF [8], a sub-language of DL-LiteA, and in which the
mapping assertions have the simplest possible form, i.e., they map a single source rela-
tion to a single concept or role of the global schema10. The proof is based on a reduction
from reachability in directed graphs, which is NLOGSPACE-hard.

Let G = 〈V,E〉 be a directed graph, where V is the set of vertexes and E the set
of directed edges. Reachability is the problem of deciding, given two vertexes s, t ∈ V
whether there is an oriented path formed by edges inE in the graph that, starting from s
allows to reach t. We consider the graph represented through first-child and next-sibling
functional relations F , N , S (cf. Figure 2).

v0

v1 v2 vn

v0

v1 v2 vn

...

...

E E E

F

S S SN N N

Fig. 2. Representation of a graph through the functional relations F , N , S

We define the data integration system Juna = 〈G,S,M〉 as follows:

– The alphabet of G consists of the atomic concept Ag and the atomic roles Fg , Ng,
Sg , and Pg . G consists only of the functionality assertions {(funct Rg) | Rg ∈
{Fg, Ng, Sg, Pg}}.

– S contains the binary relational tables Fs,Ns, Ss, and Ps, with columns c1 and c2,
and the unary relational table As, with column c.

– The mappingM maps each tableRs to the corresponding role or conceptRg , i.e.,

SELECT c1, c2 FROM Rs � Rg(id(c1), id(c2)), forR ∈ {F,N, S, P}
SELECT c FROM As � Ag(id(c))

Notice that we are using a single function symbol id (that we intend to represent
the identity function).

Then, from the graphG and the two vertexes s, t, we define the source databaseDG as
follows:

DG = {Rs(a, b),Rs(a′, b′) | (a, b) ∈ R, forR ∈ {F,N, S}} ∪
{Ps(init , s), Ps(init , s′)} ∪ {As(t)}

10 The mapping assertions actually play no role in the proof, and the hardness result holds already
for a plain DL-LiteF knowledge base constituted by a TBox and an ABox.
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init
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Fig. 3. Structure of the database used in the proof of Theorem 2

In other words, we encode in DG two copies of (the representation of) the graph G. In
addition, we include in DG the facts As(t), Ps(init , s), and Ps(init , s′), where init is
a database constant that does not correspond to any vertex of (the representation of) G
(cf. Figure 3).

It is now possible to prove that t is reachable from s in G iff id(t′) ∈
cert(Q,Juna , DG), where Q(x) :− Ag(x) is the query returning the instances of Ag .
Indeed, it is easy to verify that the latter holds if and only if id(t) and id(t′) are the
same object in every interpretation in semDG(Juna ), i.e., the equality id(t) = id(t′) is
entailed by Juna . This is the case if and only if id(t) and id(t′) are forced to be equal
by the functionality of the roles Pg , Fg ,Ng, and Sg. Given the structure of the database
DG, such an equality is enforced if and only if t is reachable from s in G.

Notice that a simple variation of the above proof can be used to show that query an-
swering, and in particular instance checking already, in DL-LiteF without the unique
name assumption is NLOGSPACE-hard with respect to data complexity.

6.2 Different Source Schemas

Although MASTRO-I is currently only able to deal with relational sources, managed by
a relational data federation tool, it is not hard to see that all the results presented in this
paper apply also if we consider federation tools that provide a representation of the data
at the sources according to a different data model (e.g., XML). Obviously, depending
on the specific data model adopted by the data federation tool, we have to resort to
a suitable query language for expressing the source queries appearing in the mapping
assertions. To adhere to our framework, the only constraint on this language is that it is
able to extract tuples of values from the sources, a constraint that is trivially satisfied by
virtually all query languages used in practice.

6.3 Extensions to the Mapping Language

As for the language used to express the mappingM, we investigate the extension of the
mapping language to allow for GLAV assertions, i.e., assertions that relate conjunctive
queries over the sources to conjunctive queries over the global schema. Such assertions
are therefore an extension of both GAV and LAV mappings. Unfortunately, even with
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LAV mappings only, instance checking and query answering are no more in LOGSPACE

wrt data complexity, as the following theorem shows.

Theorem 3. Let J = 〈G,S,M〉 be a MASTRO-I data integration system extended
with LAV mapping assertions, and D a database for S. Answering a UCQ (in fact, a
query constituted by a single atom) over J with respect to D is NLOGSPACE-hard in
the size of D.

Proof. The proof is again by a reduction from reachability in directed graphs. Let G =
〈V,E〉 be a directed graph, where V is the set of vertexes and E the set of directed
edges. Again, we consider the graph represented through first-child and next-sibling
functional relations F , N , S (cf. Figure 2).

We define the data integration system Jlav = 〈G,S,M〉 as follows:

– The alphabet of G consists of the atomic concept Ag and the atomic roles Fg , Ng,
Sg , Pg , and copyg. G consists only of the functionality assertions {(funct Rg) |
Rg ∈ {Fg, Ng, Sg, Pg, copyg}}.

– S contains the binary relational tables Fs, Ns, and Ss, with columns c1 and c2, and
the unary relational table As, with column c.

– The LAV mappingM is defined as follows (cf. Figure 4)11:

As(x) � q1(x) :− Ag(x), copyg(x, x′), Pg(z, x), Pg(z, x′)
Rs(x, y) � q2(x, y) :− Rg(x, y), copyg(x, x′), copyg(y, y′),Rg(x′, y′),

forR ∈ {F,N, S}

A t
s

G

t'
s' G'

P

P

copy copycopy

Fig. 4. Interpretation generated by the LAV mapping used in the proof of Theorem 3

Then, from the graphG and the two vertexes s, t, we define the source databaseDG as
follows:

DG = {Rs(a, b) | (a, b) ∈ R, forR ∈ {F,N, S}} ∪ {As(s)}
11 For simplicity, we do not include function symbols in the mapping since, as in the proof of

Theorem 2, they would play no role in the reduction.
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Intuitively, DG is simply constituted by the binary relations Fs, Ns, and Ss, used to
represent the graphG, and a unary relation As containing s.

Now consider the queryQ(x) :− copyg(x, x)}. Then, it is possible to show that t is
reachable from s in G iff t ∈ cert(Q,Jlav , DG).

7 Conclusions

We close the paper by briefly mentioning some aspects that have been considered im-
portant for the problem of (ontology-based) data integration, but that have not been
addressed in the present paper, and are left for future work on the system MASTRO-I.

A first important point is handling inconsistencies in the data, possibly using a declar-
ative, rather than an adhoc procedural approach. An interesting proposal is the one of
the INFOMIX system [27] for the integration of heterogeneous data sources (e.g., rela-
tional, XML, HTML) accessed through a relational global schema with powerful forms
of integrity constraints. The query answering technique proposed in such a system is
based on query rewriting in Datalog enriched with negation and disjunction, under sta-
ble model semantics [6,21]. A first study on how to adapt the semantics for consistent
query answering to DL-Lite ontologies can be found in [25].

A further aspect is that of instance level integration and mappings, which deals with
the situation where individual instances, rather than ontology elements, in different
sources need to be mapped to each other (cf., e.g, [24]).

Finally, one notable direction for further work is making MASTRO-I a “write-also”
data integration tool. Indeed, while the present version of MASTRO-I provides support
for answering queries posed to the data integration system, it is of interest to also deal
with updates expressed on the global schema (e.g., according to the approach described
in [13,14]. The most challenging issue to be addressed in this context is to design mech-
anisms for correctly reformulating an update expressed over the ontology into a series
of insert and delete operations on the data sources.
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Abstract. We explore the connection between the concept of relational
complexity introduced by S. Abiteboul, M. Vardi and V. Vianu and the
restricted second-order logic SOω introduced by A. Dawar. In relational
complexity, the basis for measuring the complexity of computing queries
with relational machines, is the number of different FOk-types realized
by the input database. In SOω, the second-order quantifiers range over
relations that are closed under equality of FOk-types of k-tuples. We give
a direct proof (in the style of the proof of Fagin’s theorem) of the result
of A. Dawar on the fact that the existential fragment of SOω captures
relational NP. Then we define formally the concept of relational machine
with relational oracle and show the exact correspondence between the
prenex fragments of SOω and the levels of the relational polynomial-time
hierarchy.

1 Introduction

ififi

Therefore, the usual notion of Turing machine computable function, which
nowadays is the more widely accepted formalization of an effective procedure,
is not suitable as formalization of database query. There is no formal restriction
in the definition of Turing machine computation to force it to preserve isomor-
phisms of the input structures. In fact, if we want to compute queries using
Turing machines, we need first to encode the database into a totally ordered
structure which can then be written in the input tape.
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Several alternative abstract models of machines have been proposed to model
the computation of queries to relational databases (see [2,3,4,5] among others).
The common ground of all these devises is that they operate directly on struc-
tures rather than on encoding of structures as it is the case with Turing machines.

The fact that the models of computation of queries do not assume an ordered
domain, leads to a mismatch between the hardness of database queries and their
Turing complexity. The typical example is the even query on a set, which has
very low Turing complexity, but it is by all accounts a hard query. This query
cannot be expressed in logics as powerful as the infinitary logic with finitely
many variables (Lω

∞ω), which strictly includes all usual extensions of first-order
logic with a fixed point operator. It is only when we assume a build in order that
the inflationary fixed point logic (IFP) captures PTIME and the partial fixed
point logic (PFP) captures PSPACE.

Based on this observation, S. Abiteboul, M. Vardi and V. Vianu [6] proposed
to measure the complexity of computing queries using relational machines. This
abstract model of machine was introduced in [3,4] and originally called loosely
coupled generic machine. Latter on, it was renamed as relational machine [7,6].
This gave rise to the concept of relational complexity in which the number of
different FOk-types realized by the input database is used as the basis for mea-
suring the complexity of computing queries with relational machines.

In [8], A. Dawar introduced a restricted version of second-order logic SOω

in which the second-order quantifiers range over relations that are closed under
equality of FOk-types of k-tuples, i.e., closed under the equivalence relation ≡k

of k variable equivalence. Among other results, he proved that the existential
fragment of SOω is equivalent to the nondeterministic inflationary fixed point
logic (NFP). Since by a result of S. Abiteboul, M. Vardi and V. Vianu [6],
NFP captures relational NP (denoted NPr), it then follows that the existential
fragment of SOω captures NPr.

Continuing this line of work, we explore in detail the connection between the
concept of relational complexity and the restricted second-order logic SOω. The
aim is to provide the basis for a new line of research in the area of higher-order
logics in finite models.

In this paper, we give a direct proof (in the style of the proof of Fagin’s
theorem) of the result of A. Dawar on the fact that the existential fragment of
SOω captures NPr. Then we define formally the concept of relational machine
with relational oracle and show the exact correspondence between the prenex
fragments of SOω and the levels of the relational polynomial-time hierarchy.

This last result is the relational equivalent of Stockmeyer characterization
of the polynomial-time hierarchy [9]. It was already pointed out by A. Dawar
in [8], though he did not prove it. He also observed that, if we close the logic
NFP simultaneously under negation and the operation of taking nondeterminis-
tic fixed points, we obtain a logic equivalent to SOω. Moreover, the alternations
of negations and fixed points correspond exactly to the second-order quantifier
alternations in the prenex fragments of SOω.
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However, up to our knowledge, this is the first attempt to formally define
the relational polynomial-time hierarchy in terms of relational machines with
relational oracles, i.e., oracles consisting on classes of structures closed under
isomorphisms instead of sets of strings. This allows us to stablish a direct con-
nection between the relational polynomial hierarchy and SOω, without using the
S. Abiteboul and V. Vianu normal form for relational machines (see [4]). That
is, we do not need to encode a canonical representation of the input structure in
the Turing machine tape of the relational machine as in [6].

It is interesting to note that the idea behind SOω can be used to define
restricted versions of higher-order logics of order higher than two. We believe
that the correspondence between the relational polynomial hierarchy and the
prenex fragments Σ1,ω

m of SOω, can be extended to higher orders. We plan to
pursue this matter further in the near future.

The paper is organized as follows. In the next section we present the technical
background for the material which we cover in this article. This includes the
necessary background on the model theoretic concept of type and the notion
of relational complexity which play a central role in this work. In Section 3, we
present the syntax and semantics of the logic SOω introduced by A. Dawar in [8].
We use this logic to characterize the relational polynomial-time hierarchy which
we formally define in Section 4. Also in Section 4 we give a formal definition
of relational machine and relational oracle. Finally in Section 5 we present our
study of the relational complexity of SOω.

2 Preliminaries

As usual ([10,11]), we regard a relational database schema, as a relational vo-
cabulary, and a database instance or simply database as a finite structure of the
corresponding vocabulary. If I is a database or finite structure of some schema
σ, we denote its domain as I and sometimes also as dom(I). If R is a relation
symbol in σ of arity r, for some r ≥ 1, we denote as RI the (second-order) rela-
tion of arity r which interprets the relation symbol R in I, with the usual notion
of interpretation. We denote as Bσ the class of databases of schema σ, or finite
σ-structures.

In this paper, we consider total queries only. Let σ be a schema, let r ≥ 1, and
let R be a relation symbol of arity r. A computable query of arity r and schema
σ ([1]), is a total recursive function q : Bσ → B〈R〉 which preserves isomorphisms
such that for every database I of schema σ, dom(q(I)) ⊆ I. A Boolean query is
a 0-ary query.

We use the notion of a logic in a general sense. A formal definition would only
complicate the presentation and is unnecessary for our work. As usual in finite
model theory, we regard a logic as a language, that is, as a set of formulas (see
[10]). We do require that the sintax and the notion of satisfaction for any logic L
be decidable. We only consider vocabularies which are purely relational, and for
simplicity we do not allow constant symbols. If σ is a relational vocabulary, we
denote by L[σ] the set of L-formulae over σ. We consider finite structures only.
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Consequently, the notion of satisfaction, denoted as |=, is related to only finite
structures.

By ϕ(x1, . . . , xr) we denote a formula of some logic whose free variables are
exactly {x1, . . . , xr}. If ϕ(x1, . . . , xr) ∈ L[σ], I ∈ Bσ, ār = (a1, . . . , ar) is a
r-tuple over I, let I |= ϕ(x1, . . . , xr)[a1, . . . , ar] denote that ϕ is TRUE, when
interpreted by I, under a valuation v where for 1 ≤ i ≤ r v(xi) = ai. Then we
consider the set of all such valuations as follows:

ϕI = {(a1, . . . , ar) : a1, . . . , ar ∈ I ∧ I |= ϕ(x1, . . . , xr)[a1, . . . , ar]}

That is, ϕI is the relation defined by ϕ in the structure I, and its arity is given by
the number of free variables in ϕ. Formally, we say that a formula ϕ(x1, . . . , xr)
of signature σ, expresses a query q of schema σ, if for every database I of schema
σ, is q(I) = ϕI. Similarly, a sentence ϕ expresses a Boolean query q if for every
database I of schema σ, is q(I) = 1 iff I |= ϕ. For ϕ ∈ L[σ] we denote by Mod(ϕ)
the class of finite σ-structures I such that I |= ϕ. A class of finite σ-structures C
is definable by a L-sentence if C = Mod(ϕ) for some ϕ ∈ L[σ].

We assume that the reader is familiar with first-order logic and with the
following extensions of first-order logic with fixed point operators which are well
known in finite model theory [10,12]: inflationary fixed point logic (IFP), least
fixed point logic (LFP), and partial fixed point logic (PFP).

The fixed point logics IFP, LFP and PFP are obtained by deterministi-
cally iterating first-order operators. S. Abiteboul, M. Vardi and V. Vianu in-
troduced in [6] a fixed point logic which is obtained by nondeterministically
iterating first-order operators. Given two first-order formulae ϕ0(x1, . . . , xk, R)
and ϕ1(x1, . . . , xk, R) of a same vocabulary σ, we define a sequence of stages
F

(ϕ0,ϕ1)
b indexed by binary strings b ∈ {0, 1}∗, as follows:

F
(ϕ0,ϕ1)
λ = ∅, for the empty string λ

F
(ϕ0,ϕ1)
b·0 = F

(ϕ0,ϕ1)
b ∪ Fϕ0(F (ϕ0,ϕ1)

b )

F
(ϕ0,ϕ1)
b·1 = F

(ϕ0,ϕ1)
b ∪ Fϕ1(F (ϕ0,ϕ1)

b ).

The nondeterministic fixed point of the sequence is
⋃

b∈{0,1}∗ F
(ϕ0,ϕ1)
b . The non-

deterministic inflationary fixed point logic (NFP) is the closure of first-order
logic under the operation of taking nondeterministic inflationary fixed points,
with the restriction that negation cannot be applied to the fixed point operator.

Another way of extending the expressive power of first-order logic is by allow-
ing disjunctions and conjunctions of arbitrary (not just finite) sets of formulae.
But the resulting logic, usually denoted as L∞ω, is of little use in the study of
finite models, since every query (including noncomputable queries) over finite
structures is expressible in it. This changes when we concentrate on a bounded
variable fragment of L∞ω as all fixed point logics mentioned above can be viewed
as fragments of it. More precisely, they can be viewed as fragments of the logic
Lω
∞ω =

⋃
k∈N

Lk
∞ω, where Lk

∞ω denotes the class of formulae of L∞ω that use
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at most k different variables. The following picture follows from the works of P.
Kolaitis and M. Vardi [13,14] and A. Dawar [15].

IFP = LFP ⊆ NFP ⊆ PFP ⊂ Lω
∞ω

The last containment is proper, since there are nonrecursive queries which can
be expressed in Lω

∞ω [14] while every query definable in PFP is computable
in PSPACE. In fact, as noted by A. Dawar [8], it can be shown that Lk

∞ω is
complete on ordered structures, where the maximum arity of a relation symbol
in its vocabulary is ≤ k.

Second-order logic (SO) is yet another extension of first-order logic which
allows to quantify over relations. In addition to the symbols of first-order logic,
its alphabet contains, for each n ≥ 1, countably many n-ary relation variables. As
usual, we will use upper case letters to denote second-order relation variables. We
define the set of second-order formulae of vocabulary σ to be the set generated
by the rules for first-order formulas extended by:

– IfX is a relation variable of arity n and x0, . . . , xn−1 are individual variables,
then X(x0, . . . , xn−1) is a formula.

– If ϕ is a formula and X is a relation variable, then ∃X(ϕ) and ∀X(ϕ) are
formulae.

The free occurrence of a relation variable in a second-order formula is defined
in the obvious way and the notion of satisfaction is extended canonically. Then,
the informal semantics of ∃X(ϕ) and ∀X(ϕ) over a relational structure I, where
X is a relation variable of arity r, is “There is at least one relation RI ⊆ Ir such
that ϕ is true when X is interpreted by RI” and “For every relation RI ⊆ Ir, ϕ is
true when X is interpreted by RI”, respectively. Given a σ-structure I, a formula
ϕ = ϕ(x0, . . . , xn, X0, . . . , Xk) with free individual variables among x0, . . . , xn

and free relation variables among X0, . . .Xk, elements a0, . . . , an ∈ I, and rela-
tions RI

0, . . . , R
I
k, over I of arities corresponding to X0, . . . , Xk, respectivelly, we

say that I |= ϕ[a0, . . . , an, R
I
0, . . . , R

I
k] if the elements a0, . . . , an together with

RI
0, . . . , R

I
k satisfy ϕ in I.

It is a well known fact that every second-order formula is logically equivalent
to one in prenex normal form in which each second-order quantifier precedes all
first-order quantifiers. Such a formula is called Σ1

m, if the string of second-order
quantifiers consists of m consecutive blocks, where in each block all quantifiers
are of the same type (i.e., all universal or all existential), adjacent blocks contain
quantifiers of different type, and the first block is existential.Π1

m is defined in the
same way, but it is required that the first block consists of universal quantifiers.

2.1 Type of a Tuple

We need to consider the properties of a tuple in a relational structure or database,
which are definable in a given logic. For this, we use the model theoretic concept
of type. The results that we use in this work are mainly from [15,16]. Another
excellent source for the subject is [17]. Our notation comes mostly from there.
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Definition 1. Let L be a logic, let I be a relational structure of vocabulary σ,
and let ā = (a1, . . . , ak) be a k-tuple over I. The L-type of ā in I, denoted tpLI (ā),
is the set of formulas in L[σ] with free variables among {x1, . . . , xk} which are
satisfied in I by any valuation which, for 1 ≤ i ≤ k, assigns the i-th component
of ā to the variable xi. In symbols,

tpLI (ā) = {ϕ ∈ L[σ] : free(ϕ) ⊆ {x1, . . . , xk} and I |= ϕ[a1, . . . , ak]}

Note that, the L-type of a given tuple ā over a relational structure I, includes
not only the properties of all sub-tuples of ā, but also the set of all sentences in
L which are true when evaluated on I, i.e., the L-theory of I.

According to Definition 1, a type is an infinite set of formulas which is con-
sistent, i.e., there is a structure and a valuation which satisfy all the formulas
in the set. Moreover, the set is maximally consistent, that is, if we add any for-
mula to the set, we loose the consistency of the set. Therefore, we can think of
the type of a tuple as a maximally consistent set of formulae, without having a
particular relational structure in mind. If α is the L-type of some tuple ā, i.e., α
is a maximally consistent set of L-formulae of some vocabulary σ, we say that
a given σ-structure I realizes the type α if there is a tuple ā over I such that
tpLI (ā) = α.

The notion of FO-type, usually encountered in classical (infinite) model the-
ory, is not of much value in the context of finite model theory, since every tuple
can be characterized up to isomorphism by its FO-type. However, if we consider
logics which are weaker than first-order as to expressive power, that is not longer
the case. In this context, a notion which has proven to be of great importance
is that of FOk-type, where for k > 0, FOk denotes the fragment of first-order
logic where only formulae with variables in {x1, . . . , xk} are allowed. Note that
the class of queries expressible in FOk is strictly included in the class of queries
expressible in FO and that FO =

⋃
k>0 FOk.

Definition 2. For k ≥ r ≥ 1, we denote by ≡k the equivalence relation induced
in the set of r-tuples over a given structure I, by equality of FOk-types of r-tuples.
That is, for every pair of r-tuples ā and b̄ over I, ā ≡k b̄ iff tpFOk

I (ā) = tpFOk

I (b̄).

P. Kolaitis and M. Vardi [14] showed that on finite structures, the equivalence
relation ≡k and the apparently stronger notion of equivalence of Lk

∞ω-types,
actually coincide. That is, they showed that if ā ≡k b̄ over a given finite structure
I of vocabulary σ, then for every ϕ ∈ Lk

∞ω [σ], it holds that I |= ϕ[ā] iff I |= ϕ[b̄],
and vice versa.

Definition 3. Let k ≥ 1, let σ be a relational vocabulary, and let I be a σ-
structure. We say that a relation RI of arity r ≤ k is closed under the equivalence
relation ≡k iff, for every pair of r-tuples ā and b̄ over I, if ā ∈ RI and ā ≡k b̄,
then b̄ ∈ RI.

P. Kolaitis and M. Vardi [14] also showed that a query q of arity r ≤ k is
expressible in Lk

∞ω iff it is closed under ≡k. The same is true for the fixed point
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logics mentioned earlier, since the classes of queries expressible in those logics
are strictly included in the class of queries expressible in Lω

∞ω .
Although types are infinite sets of formulas, due to a result of A. Dawar

[15], a single FOk-formula is equivalent to the FOk-type of a tuple over a given
database. The equivalence holds for all databases of the same schema.

Lemma 1 (Corollary 2.18 in [15]). For every schema σ, for every database
I of schema σ, for every k ≥ 1, for every 1 ≤ r ≤ k, and for every r-tuple ā
over I, there is an FOk-formula α ∈ tpFOk

I (ā) such that for any database J of
schema σ and for every r-tuple b̄ over J, J |= α[b̄] iff tpFOk

I (ā) = tpFOk

J (b̄).

If an FOk formula α satisfies the condition of Lemma 1, we say that α isolates
the tpFOk

I (ā).
It is well known that the relation ≡k is uniformly definable in LFP, or equiv-

alently in IFP.

Theorem 1 ([13,16]). For every relational vocabulary σ and every k ≥ 1, there
is a formula ϕk

σ of IFP, with 2k free variables, such that on any finite σ-structure
I, given two k-tuples ā and b̄ on I, I |= ϕk

σ[ā, b̄] iff ā ≡k b̄.

Moreover, a total ordering of the FOk-types of a given vocabulary is also uni-
formly definable in LFP, or equivalently in IFP.

Theorem 2 ([4,16]). For every relational vocabulary σ and every k ≥ 1, there
is a formula λk

σ of IFP, with 2k free variables, such that on any finite σ-structure
I, λk

σ defines a reflexive and transitive relation ≤k on k-tuples such that for every
two k-tuples ā and b̄ on I, either ā ≤k b̄ or b̄ ≤k ā and both ā ≤k b̄ and b̄ ≤k ā
hold iff ā ≡k b̄.

That is, for every relational vocabulary σ and every k ≥ 1, the corresponding
IFP-formula λk

σ defines, on any finite σ-structure I, a preorder such that the
corresponding equivalence relation is ≡k. Thus, λk

σ can be seen as defining a
total order on the equivalence classes of ≡k.

2.2 Background from Relational Complexity

A relational machine is a Turing machine augmented with a finite set of fixed-
arity relations forming a relational store (rs). Designated relations contain ini-
tially the input database, and one specific relation holds the output at the end
of the computation. A relational machine uses a finite set of first-order formulae
to interact with the rs . Transitions have the form:
If the internal state of the machine is q,

the tape head is reading symbol x and
the first-order sentence ϕ evaluates to true in the rs ,

then change state to q′,
write symbol x′ in the tape,
move the tape head one cell to the left/right and
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replace the r-ary relation R by the relation defined by the first-order
formula ψ(x1, . . . , xr) in the structure contained in the rs.

We give a formal definition of this machine in Section 4.
Each relational machine has an associated arity, which is the maximum num-

ber of variables which appear in any formula in its finite control.
Unlike Turing machines, relational machines have limited access to their input.

Note that a k-ary relational machine can only access to its input through a fixed
set of FOk queries. In particular, relational machines cannot compute the size
of their input structures in the general case. This is so because the discerning
power of the relational machines is limited. More precisely, a relational machine
of arity k cannot distinguish between tuples of elements of the input structure
whose respective FOk-types coincide.

Proposition 1 ([6]). Let 1 ≤ r ≤ k. For every pair of r-tuples ā and b̄ over
a relational structure I, ā ≡k b̄ iff no k-ary relational machine can distinguish
among ā and b̄ over I.

Therefore, computations of k-ary relational machines are determined by the
equivalence classes of the relation ≡k. In fact, as shown by S. Abiteboul and
V. Vianu in [4], relational machines are complete on ordered input structures
(where all distinct tuples have different FOk-type), but they collapse to first-
order logic on unordered sets (where the number of equivalence classes in ≡k is
bounded by a constant independently of the size of the input structure).

Since k-ary relational machines cannot distinguish between tuples which are
≡k-equivalent, they cannot compute the size of their input structures. But, they
can compute the number of ≡k-classes.

Proposition 2 ([6]). Let the k-size of a structure I, denoted sizek(I), be the
number of ≡k-classes of k-tuples over I. For each k ≥ 1 and relational vocabulary
σ, there is a deterministic relational machine Mσ of arity 2k that outputs on its
Turing machine tape, for an input structure I of vocabulary σ, a string of length
sizek(I) in time polynomial in sizek(I).

Based on these facts, S. Abiteboul and V. Vianu proposed to use the k-size as
a basis for measuring the complexity of relational machines. This is also the
approach that we follow here.

We think of a relational machine M as an acceptor of a relational language,
i.e., a class of structures of a relational vocabulary closed under isomorphisms.
The relational language accepted by M , denoted L(M), is simply the set of
input structures accepted by M . If M is deterministic, then the computation
time of M on an input structure I is the number of transitions that M makes
before accepting or rejecting I, while the computation space is the number of
tape cells scanned. If M is nondeterministic, then we only consider accepting
computations. In that case, the computation time of M on an input structure
I is the number of transitions in the shortest accepting computation of M on
I, while the computation space is the minimum number of tape cells scanned in
any accepting computation of M on I.
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Definition 4. Let L(M) be the relational language accepted by a halting rela-
tional machine M of arity k. Let t and s be functions on the natural numbers
such that t(n) ≥ n+ 1 and s(n) ≥ 1. Then we say that:

– L(M) ∈ DTIMEr(t(n)) if M is deterministic and its computation time on
any input structure I is bounded above by t(sizek(I));

– L(M) ∈ NTIMEr(t(n)) if M is nondeterministic and its computation time
on any input structure I is bounded above by t(sizek(I));

– L(M) ∈ DSPACEr(s(n)) if M is deterministic and its computation space on
any input structure I is bounded above by s(sizek(I));

– L(M) ∈ NSPACEr(s(n)) ifM is nondeterministic and its computation space
on any input structure I is bounded above by s(sizek(I)).

Mirroring the classical complexity classes, we define the class Pr of the rela-
tional languages decidable by relational machines working in polynomial-time
in the k-size of their input structures as Pr =

⋃
c∈N

DTIMEr(nc); and the
class NPr of the relational languages decidable by nondeterministic relational
machine working in polynomial-time in the k-size of their input structures as
NPr =

⋃
c∈N

NTIMEr(nc). The class PSPACEr of relational languages decid-
able by relational machines working in polynomial-space in the k-size of their
input structures is

⋃
c∈N

DSPACEr(nc).
A logic L captures a relational complexity class Cr iff every class of relational

structures definable in L is in Cr and vice versa.
S. Abiteboul, M. Vardi and V. Vianu proved the following results relating

fixed point logics over finite structures and relational complexity classes.

Theorem 3 ([4,6])

– IFP captures Pr,
– NFP captures NPr,
– PFP captures PSPACEr.

Interestingly, questions about containments among the standard complexity
classes translate to questions about containments among the relational complex-
ity classes.

Theorem 4 ([6]). Let Class(Resource,Control ,Bound) and Classr(Resource,
Control ,Bound) denote the classical complexity class and the relational com-
plexity class, respectively, where Resource is either time or space, Control is
either deterministic, nondeterministic, or alternating, and Bound is the bound-
ing function or family of functions. Let F1 and F2 be polynomially closed sets
of time/space constructible functions, and let Resource1, Resource2, Control1,
Control2 be kinds of resources and controls, respectively. It holds that,

Class(Resource1,Control1, F1) ⊆ Class(Resource2,Control2, F2)

if and only if

Classr(Resource1,Control1, F1) ⊆ Classr(Resource2,Control2, F2).



The Relational Polynomial-Time Hierarchy and Second-Order Logic 57

It follows that the known relationships between deterministic and nondetermin-
istic complexity classes, also hold for relational complexity classes. For instance,
the class of relational languages decidable by nondeterministic relational ma-
chines in polynomial space collapses to PSPACEr. Also, open questions about
standard complexity classes translate to questions about relational complexity
classes. For example, P = NP iff Pr = NPr.

Note that, the well known Abiteboul-Vianu theorem, which reduces the prob-
lem of separating complexity classes P and PSPACE to separating the fixed point
logics LFP and PFP over unordered structures, follows from Theorems 3 and 4.

3 A Restricted Second-Order Logic

Motivated by the study of the finite model theory of the infinitary logic with
finitely many variables (Lω∞ω), A. Dawar defined in [8] a restricted version of
second-order logic SOω which is contained within Lω

∞ω. This is obtained by
restricting the interpretation of the second-order quantifiers to relations closed
under the equivalence relation ≡k, for some k (see Definitions 2 and 3).

We define next the syntax and semantics of SOω.

Definition 5. In addition to the symbols of first-order logic, the alphabet of SOω

contains, for each k ≥ 1, a second-order quantifier ∃k and countably many k-ary
relation variables V k

1 , V
k
2 , . . . To denote relation variables we use letters X,Y, . . ..

Let m ≥ 1 and let σ be a relational vocabulary, we denote by Σ1,ω
m [σ] the class

of formulae of the form

∃k1
1X11 . . . ∃k1

s1X1s1∀k2
1X21 . . . ∀k2

s2X2s2 . . . Q
km
1 Xm1 . . . Q

km
smXmsm(ϕ),

where for i, j ≥ 1 we have si, ki
j ≥ 1 and arity(Xij) ≤ ki

j, Q is either ∃ or
∀, depending on whether m is odd or even, respectively, and ϕ is a first-order
formula of vocabulary σ ∪ {X11, . . . , X1s1 , X21, . . . , X2s2 , . . . , Xm1, . . . , Xmsm}.
As usual, ∀kX(ϕ) abbreviates ¬∃kX(¬ϕ).

Similarly, we denote by Π1,ω
m [σ] the class of formulae of the form

∀k1
1X11 . . . ∀k1

s1X1s1∃k2
1X21 . . . ∃k2

s2X2s2 . . . Q
km
1 Xm1 . . . Q

km
smXmsm(ϕ),

where for i, j ≥ 1 we have si, ki
j ≥ 1 and arity(Xij) ≤ ki

j, Q is either ∀ or
∃, depending on whether m is odd or even, respectively, and ϕ is a first-order
formula of vocabulary σ ∪ {X11, . . . , X1s1 , X21, . . . , X2s2 , . . . , Xm1, . . . , Xmsm}.

The set of formulae of SOω is then defined as the union of the set of first-order
formulae with

⋃
m≥1Σ

1,ω
m .

The notion of satisfaction in SOω extends the notion of satisfaction in first-
order with the following rule:

– I |= ∃kX(ϕ) where k ≥ 1, X is a relation variable of arity r ≤ k, ϕ is a wff of
vocabulary σ ∪ {X} and I is a σ-structure, iff there is an R ⊆ Ir such that R
is closed under the equivalence relation ≡k in I, and (I, R) |= ϕ. Here (I, R) is
the (σ ∪ {X})-structure expanding I, in which X is interpreted as R.



58 F.A. Ferrarotti and J.M.T. Torres

Note that, for each Σ1,ω
m -formula ϕ ≡ ∃k1X1 . . . Q

ksXs(ψ), there is a formula
ϕ̂ ∈ Σ1

m which is equivalent to ϕ. The corresponding formula ϕ̂ is simply,

∃X1 . . . QXs

(
ψ ∧

∧
1≤i≤s

γki(Xi)
)
,

where γki(Xi) expresses that Xi is ≡ki-closed. Since IFP ⊆ Σ1
1 ∩Π1

1 , it clearly
follows from Theorem 1 that γk is definable in Σ1

m.
It is is important to mention that the restricted second-order logic SOω is not

really restricted over ordered structures.

Theorem 5 ([8]). On ordered structures, for every m ≥ 1, Σ1,ω
m = Σ1

m and
Π1,ω

m = Π1
m.

4 Relational Machines

We already introduced the relational machine in Section 2.2. But for the detail
of the proofs, we need a formal definition.

Recall that the relational machine consists of a Turing machine augmented
with a finite set of fixed-arity relations forming a relational store (rs). We assume
that the Turing machine component of our relational machine consists of a finite
control which has a finite set of internal states, plus a one-way infinite tape
equipped with a read/write tape head which can move right or left.

Definition 6. We formally define a deterministic relational machine as an
eleven-tuple, 〈Q,Σ, δ, q0, b, F, τ, σ, T,Ω, Φ〉, where:

1. Q is the finite set of internal states;
2. Σ is the tape alphabet;
3. b ∈ Σ is the symbol denoting blank;
4. q0 ∈ Q is the initial state;
5. F ⊆ Q is the set of accepting final states;
6. τ is the vocabulary of the rs;
7. σ ⊂ τ is the vocabulary of the input structure;
8. T ∈ τ \ σ is the output relation;
9. Ω is a finite set of first-order sentences of vocabulary τ ;

10. Φ is a finite set of first-order formulas of vocabulary τ , and
11. δ : Q × Σ × Ω → Σ × Q × {R,L} × Φ × τ is a partial function called the

transition function.

Transitions are based on:

i. the current state;
ii. the content of the current tape cell; and
iii. the answer to a Boolean first-order query evaluated on the τ -structure held

in the rs.
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Situations in which the transition function is undefined indicate that the compu-
tation must stop. Otherwise, the result of the transition function is interpreted
as follows:

i. the first component is the symbol to be written on the scanned cell of the
tape;

ii. the second component is the new state;
iii. the third component specifies the moves of the tape head: R means moving

one cell to the right and L means moving one cell to the left;
iv. the fourth component specifies an n-ary (n ≥ 1) first-order query ϕ to be

evaluated on the τ -structure held in the rs ; and
v. the fifth component is an n-ary relation symbol in τ , which specifies the
n-ary relation in the rs to be replaced by the relation obtained from the
evaluation of ϕ.

We can now introduce for relational machines the analogous to the concepts
of configuration (also called instantaneous description or snapshot) and compu-
tation of Turing machines.

Definition 7. Given a relational machine M , a configuration of M is a de-
scription of the whole status of the computation: it includes the contents of the
tape, the position of the tape head, the current internal state of the finite con-
trol, and the contents of the relational store. Formally, a configuration of M is
a 3-tuple (q, w,A) where q is the current internal state of M , w ∈ Σ∗#Σ∗ rep-
resents the current contents of the tape, and A is the current τ-structure held in
the rs. The symbol “#” is supposed not to be in Σ, and marks the position of
the tape head (by convention, the head scans the symbol immediately at the right
of the “#”). All symbols in the infinite tape not appearing in w are assumed to
be the particular symbol blank “b”.

The machine starts in the initial state, with the input in the designated relations
of the relational store, and an empty tape.

Definition 8. The initial configuration of a relational machine M on an input
structure I of vocabulary σ is (q0,#,A), where A is the τ-structure which extends
I with an empty relation RA

i for each relation symbol Ri in τ . The head is
assumed to be in the left-most position of the tape.

The fact of accepting an input is indicated by an accepting configuration.

Definition 9. An accepting configuration is a configuration whose state is an
accepting state.

A computation of a relational machine can now be defined as a sequence of
configurations:

Definition 10. Given a relational machine M and an input structure I, a par-
tial computation of M on I is a (finite or infinite) sequence of configurations
of M , in which each step from a configuration to the next obeys the transition
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function. A computation is a partial computation which start with the initial con-
figuration, and ends in a configuration in which no more steps can be performed.
An accepting computation is a computation ending in an accepting configura-
tion, and in this case the input structure I is accepted.

Relational machines give rise to three types of computational devices. First, we
can think of a relational machineM as an acceptor of a relational language, i.e., a
class of structures closed under isomorphisms. In this case the relational language
accepted by M , denoted L(M), is the set of input structures accepted by M . We
can also think of a relational machineM as computing a relational function from
input structures to output relations. The relational function computed by M is
defined on the relational language accepted by M , and for each accepted input
structure the value of the relational function is the relation held in the output
relation T in the rs when the machine stops in an accepting state. Finally, we can
think of a relational machine M as computing a mixed function, i.e., a function
from structures to strings where the output is written on the machine’s tape.
Again the function is defined on the relational language accepted byM . For each
accepted input structure the value of this function is the word which appears in
the tape when the machine stops in an accepting state.

The arity of a relational machine is the maximum number of variables which
appear in any formula in its finite control.

Definition 11. Let M = 〈Q,Σ, δ, q0, b, F, τ, σ, T,Ω, Φ〉 be a relational machine,
the arity of M , denoted as arity(M), is max({|var(ϕ)| : ϕ ∈ Ω ∪ Φ}).

4.1 Nondeterministic Relational Machines

In analogy with nondeterministic Turing machines, we can define nondetermin-
istic relational machines.

Definition 12. A nondeterministic relational machine is a eleven-tuple, 〈Q,Σ,
δ, q0, b, F, σ, τ, T,Ω, Φ〉, where each component is as in the deterministic case,
with the exception that the transition function is defined by

δ : Q×Σ ×Ω → P(Σ ×Q× {R,L} × Φ× τ)

where, for any set A, P(A) denotes the powerset of A.

All the definitions and remarks made for the deterministic case about config-
urations and computations, apply in the same manner to the nondeterministic
model. However, on a given input structure there is now not only one com-
putation, but a set of possible computations. Acceptance for nondeterministic
relational machines is therefore defined as follows.

Definition 13. An input structure I is accepted by an nondeterministic rela-
tional machine M iff there exists a computation ofM on I ending in an accepting
configuration. We denote by L(M) the relational language accepted by M , i.e.,
the class of σ-structures accepted by M .
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4.2 Relational Oracle Machines

Definition 14. A relational oracle machine is a relational machine with a dis-
tinguished set of relations in its rs, called oracle relations, and three distinguished
states q?, the query state, and qYES , qNO , the answer states.

Similarly to the case of oracle Turing machines, the computation of an oracle
relational machine requires that an oracle language be fixed previously to the
computation. But, since we are working with relational machines, it is natural to
think of a relational oracle language, i.e., a class of structures closed under iso-
morphisms, rather than a set of strings. Let C be an arbitrary class of structures
of some vocabulary σo which is closed under isomorphisms. The computation
of a relational oracle machine M with oracle C and distinguished set of oracle
relation symbols σo, proceeds like in an ordinary relational machine, except for
transitions from the query state. From the query stateM transfers into the state
qYES if the relational structure of vocabulary σo formed by the domain of the
input structure and the distinguished set of oracle relations currently held in the
rs, belongs to C; otherwise, M transfers into the state qNO .

4.3 Relational Polynomial-Time Hierarchy

The time complexity of oracle relational machines is defined precisely in the
same way as with ordinary relational machines. Each query step counts as one
ordinary step. Thus if C is any deterministic or nondeterministic relational time
complexity class and A is a relational language, we can define CA to be the class
of all relational languages accepted by halting relational machines of the same
sort and time bound as in C, only that the machines have now an oracle A.

Definition 15. The levels of the relational polynomial-time hierarchy are de-
fined as follows:

– ∆Pr
0 = ΣPr

0 = ΠPr
0 = Pr

– and for m > 0,

∆Pr
m+1 = PΣPr

m
r ΣPr

m+1 = NPΣPr
m

r ΠPr
m+1 = coNPΣPr

m
r .

The relational complexity class PHr is the union of all relational complexity
classes in the relational polynomial time hierarchy, i.e., PHr =

⋃
m∈N

ΣPr
m .

5 The Relational Complexity of SOω

We know by the work of A. Dawar that the expressive power of the fragment
Σ1,ω

1 of SOω equals the expressive power of the nondeterministic inflationary
fixed point logic.

Theorem 6 ([8]). Σ1,ω
1 = NFP.
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It clearly follows from this result and Theorem 3 that the classes of relational
structures which are finitely axiomatizable in Σ1,ω

1 , are exactly those classes
which belong to the relational complexity class NPr.

Theorem 7 ([8]). Σ1,ω
1 captures NPr.

We give next a direct proof of this result. That is, we show that for every rela-
tional vocabulary σ, every Σ1,ω

1 [σ]-sentence ϕ can be evaluated in NPr, and vice
versa that every NPr property of finite relational structures can be expressed in
Σ1,ω

1 . But first, we need some preparation.
The next lemma is a direct consequence of Theorems 3 and 2.

Lemma 2. For every relational vocabulary σ and every k ≥ 1, there is a de-
terministic relational machine M≤k of arity k′ ≥ 2k, such that on any input
structure I of vocabulary σ, M≤k computes the preorder ≤k of Theorem 2 work-
ing in time bounded by a polynomial in sizek′(I).

The following two facts are variations of Facts 3.2 and 3.1 in [18], respectively.
Anyway, we prove them for their better understanding.

Fact 8. Let I be a relational structure of some vocabulary σ, and let ā = (a1, . . . ,
ak) and b̄ = (b1, . . . , bk) be two k-tuples on I. Let 1 ≤ r ≤ k and let (i1, . . . ir) be
a tuple of projection coordinates, where for 1 ≤ j < r, we have 1 ≤ ij < ij+1 ≤ k.
Let ā′ = (ai1 , . . . , air) and b̄′ = (bi1 , . . . , bir ). It follows that, if ā ≡k b̄, then both
ā′ ≡k b̄′ and ā′ ≡r b̄′ hold.

Proof. By definition of the FOk-type of a tuple, for every FOk formula ϕ ∈
tpFOk

I (ā), with free(ϕ) ⊆ {xi1 , . . . , xir}, it holds that I |= ϕ[ā]. Since the valua-
tion represented by the sub-tuple ā′ = (ai1 , . . . , air ) assigns to the free variables
in ϕ the same elements from I as the valuation represented by the tuple ā, it also
holds that I |= ϕ[ā′]. Thus we can define tpFOk

I (ā′) as the set of FOk formulae
ϕ ∈ tpFOk

I (ā) such that free(ϕ) ⊆ {xi1 , . . . , xir}. Given that tpFOk

I (b̄′) can be
defined in the same way, if tpFOk

I (ā) = tpFOk

I (b̄), then tpFOk

I (ā′) = tpFOk

I (b̄′).
To prove that ā′ ≡r b̄′, we use the same argument, except that we consider

FOr formulae ϕ ∈ tpFOk

I (ā) and FOr formulae ϕ ∈ tpFOk

I (b̄), instead of FOk

formulae, to build tpFOr

I (ā′) and tpFOr

I (b̄′), respectively. ��

Fact 9. Let I be a relational structure of some vocabulary σ and let ϕ be a
FOk[σ]-formula with 1 ≤ r ≤ k free variables. The relation that ϕ defines on I,
i.e. ϕI, is closed under ≡k.

Proof. Let ā and b̄ be two r-tuples on I. We show that, if ā ∈ ϕI and ā ≡k b̄,
then b̄ ∈ ϕI. Since ā ∈ ϕI , then by definition of the FOk-type of a tuple and
definition of ϕI, we have that ϕ is in tpFOk

I (ā). Given that ā ≡k b̄, ϕ is also in
tpFOk

I (b̄), and therefore I |= ϕ[b̄]. Hence, b̄ ∈ ϕI. ��

The following is a straightforward consequence of Fact 8.
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Fact 10. Let I be a relational structure of some vocabulary σ. For every 1 ≤
r ≤ k, it holds that sizer(I) ≤ sizek(I).

We can now proceed with the first part of our direct proof of A. Dawar’s result
regarding the relational complexity of Σ1,ω

1 , i.e., Theorem 7.

Proposition 3. Every class of relational structures definable in Σ1,ω
1 is in NPr.

Proof. We show that for every relational vocabulary σ, every Σ1,ω
1 [σ]-sentence

ϕ can be evaluated in NPr. Suppose that ϕ is ∃k1X1 . . . ∃ksXs(ψ), where ψ is
a first-order formula of vocabulary σ ∪ {X1, . . . , Xs}. We build a nondetermin-
istic relational machine Mϕ which evaluates ϕ on input structures of vocab-
ulary σ. For 1 ≤ i ≤ s, let k′i ≥ 2ki be the arity of the relational machine
M≤ki of Lemma 2 which computes the preorder ≤ki of Theorem 2. The ar-
ity k of Mϕ is max ({k′1, . . . , k′s}). The vocabulary τ of the relational store is
σ ∪ {X1, . . . , Xs,≤k1 , . . . ,≤ks , S1, . . . , Ss}, where for 1 ≤ i ≤ s, the arity of Xi

is exactly the same as the arity ri ≤ ki of the corresponding quantified relation
variable in ϕ, the arity of ≤ki is 2ki, and the arity of Si is ki. Let I be the input
structure to Mϕ. The machine works as follows:

– For each 1 ≤ i ≤ s, Mϕ builds the preorder ≤ki of Theorem 2 in its rs.
To complete this step, Mϕ simply emulates, for each preorder ≤ki , the
corresponding deterministic relational machine M≤ki of arity k′i ≥ 2ki of
Lemma 2. Therefore, Mϕ can compute each preorder ≤ki working determin-
istically in time bounded by a polynomial in sizek′

i
(I), and as k ≥ k′i, all

preorders ≤ki working deterministically in time bounded by a polynomial in
sizek(I) (which by Fact 10 is ≥ sizek′

i
(I)).

– By stepping through the equivalence classes of the relation ≡ki in the or-
der given by ≤ki , Mϕ computes sizeki(I) for every 1 ≤ i ≤ s. Clearly the
computation can be carried out by working deterministically in a number of
steps polynomial in sizek(I). See also Proposition 2.

– For 1 ≤ i ≤ s, Mϕ guesses and writes over its Turing machine tape a tuple
āi = (ai1, . . . , aisizeki

(I)) ∈ {0, 1}sizeki
(I). Since for each 1 ≤ i ≤ s, Mϕ can

perform this task working nondeterministically in time sizeki(I) (which by
Fact 10 is ≤ sizek(I)), this computation takes time polynomial in sizek(I).

– Using the binary tuples guessed in the previous step,Mϕ generates, for every
1 ≤ i ≤ s, a relation which is placed in Xi in its rs and is closed under the
equivalence relation ≡ki in I.

For i = 1 to s.
For j = 1 to sizeki(I)

Begin
If aij = 1 then
Xi := Xi(x1, . . . , xri) ∨ (∃xri+1 . . . xki(¬Si(x1, . . . , xki)∧

∀y1 . . . yki(≤ki (y1, . . . , yki , x1, . . . , xki)∧
¬ ≤ki (x1, . . . , xki , y1, . . . , yki)→ Si(y1, . . . yki))));

Si := Si(x̄) ∨ (¬Si(x̄) ∧ ∀ȳ(≤ki (ȳ, x̄) ∧ ¬ ≤ki (x̄, ȳ)→ Si(ȳ)));
End;
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Mϕ can clearly perform this task working deterministically in time bounded
by a polynomial in sizek(I).

– Finally, Mϕ evaluates ψ on the τ -structure currently held in its rs. Mϕ

accepts the input structure I iff ψ evaluates to true.

Hence, ϕ can be evaluated in NPr. ��

Before proving the converse of the previous result, we need an additional fact.

Fact 11. Let I be a relational structure. For 1 ≤ i ≤ n, let ki ≥ ri ≥ 1 and let
Ci be the set of equivalence classes of ri-tuples determined by ≡ki on I. If follows
that, for every CR ⊆ C1 × . . .× Cn, the relation

RI = {(a11, . . . , a1r1 , a21, . . . , a2r2 , . . . , an1, . . . anrn) ∈ Ir1+r2+...+rn :

([(a11, . . . , a1r1)], [(a21, . . . , a2r2)], . . . , [(an1, . . . anrn)]) ∈ CR}

is closed under ≡k1+k2+···+kn on I.

Proof. Suppose that there is a CR ⊆ C1 × . . . × Cn such that its corresponding
relation RI is not closed under ≡k1+k2+···+kn on I. Then, there are two (r1 +
r2 + · · ·+ rn)-tuples

ā = (a11, . . . , a1r1 , a21, . . . , a2r2 , . . . , an1, . . . , anrn), and

b̄ = (b11, . . . , b1r1 , b21, . . . , b2r2 , . . . , bn1, . . . , bnrn)

on I such that ā ∈ RI, b̄ 
∈ RI and ā ≡k1+k2+···+kn b̄. Since ā ≡k1+k2+···+kn b̄, for
1 ≤ i ≤ n, it holds that (ai1, . . . , airi) ≡ki (bi1, . . . , biri). But then, by definition
of RI, we have that b̄ ∈ RI which contradicts our hypothesis. ��

Fact 12. Let M be a relational machine of arity k and let σ and τ be the vo-
cabularies of the input structure and the rs, respectively. In every configuration
in a computation of M on an input structure I, every relation Ri of arity ri ≤ k
held in the rs of M is closed under the equivalence relation ≡k on I.

Proof. We proceed by induction on the sequence of configurations of a compu-
tation of M on an input structure I. W.l.o.g. we can assume that the relations
of the input structure I, i.e., the relations in the rs which interpret the relation
symbols in σ, are not modified through any computation of M . This poses no
problem since in case that such a modification is needed, we can just get another
copy of the relation which would be in σ\τ and modify the new relation instead.

In the initial configuration of M , the τ -structure A0 held in the rs is I ex-
tended with an empty relation RA0

i for each relation symbol Ri in τ \ σ. Note
that, by Fact 8, if a relation R of arity r ≤ k is closed under ≡r, then R is
also closed under ≡k, hence we only need to show that for every relation symbol
Ri ∈ σ of arity ri, the relation RI

i is closed under ≡ri on I. Let us assume that
there is a Ri ∈ σ such that RI

i is not closed under ≡ri on I. If that is the case,
there are two ri-tuples ā, b̄ ∈ Iri such that ā ∈ RI

i , b̄ 
∈ RI
i and ā ≡ri b̄. But
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then there is a FOri -formula of vocabulary σ, namely Ri(x1, . . . , xri), such that
I |= Ri(x1, . . . , xri)[ā] while I 
|= Ri(x1, . . . , xri)[b̄], which clearly contradicts our
assumption that ā ≡ri b̄.

For a configuration other than the initial configuration, we assume as inductive
hypothesis that, in the preceding configuration in the sequence, every relation
R

An−1
i of arity ri ≤ k in the τ -structure An−1 held in the rs of M , is closed

under ≡k on I. Let An be the τ -structure held in the rs of M in the current
configuration. Note that in each step from a configuration to the nextM updates
exactly one relation in its rs. Let RAn

x of arity rx be the relation updated in
the step from the previous to the current configuration in the sequence, and let
ϕRx ∈ FOk[τ ] be the formula used for the update. We show below that there is
a formula ϕ′

Rx
∈ FOk[σ] such that ϕAn−1

Rx
= ϕ′I

Rx
, i.e., ϕ′

Rx
defines in I the same

relation that ϕRx defines in An−1. Since the FOk-formula ϕ′
Rx

of vocabulary σ
defines on I the relation RAn

x , it follows by Fact 9 that RAn
x is closed under ≡k

on I.
By inductive hypothesis, if RAn−1

i is a relation of arity ri in An−1, then it is
closed under ≡k on I. Let TRi = {tpFOk

I (ā) : ā ∈ RAn−1
i } be the set of FOk-types

realized by RAn−1
i on I. By Lemma 1, for every type tj ∈ TRi , there is an FOk

formula αtj of vocabulary σ which isolates tj . Therefore, the FOk-formula ψRi ≡∨
tj∈TRi

αtj of vocabulary σ defines RAn−1
i on I. The formula ϕ′

Rx
is built from

ϕRx with every occurrence of a sub-formula of the form Ri(x1, . . . , xri), where
Ri ∈ τ \ σ, replaced by the corresponding sub-formula ψRi(x1, . . . , xri). ��
We complete the proof of Theorem 7 showing that every NPr property of finite
relational structures can be expressed in Σ1,ω

1 . The proof is close to the proof of
Fagin’s theorem in [12], but we need to bear in mind that we can only quantify
relational variables which are closed under the equivalence relation ≡k for some
k, and we have to take into account the rs of the machine.

Proposition 4. Every class of relational structures (relational language) in
NPr is definable in Σ1,ω

1 .

Proof. Let q : Bσ → {0, 1} be a Boolean query which is computed by a non-
deterministic relational machine M = 〈Q,Σ, δ, q0, b, F, σ, τ, Rl, Ω, Φ〉 of arity k,
working in polynomial time in the k-size of the input structure of vocabulary σ.
We assume that M works in time (sizek(I))s for some s ≥ 1 and I ∈ Bσ. Here

– Q = {q0, . . . , qm} is the finite set of internal states; q0 ∈ Q is the initial state;
– Σ = {0, 1, b} is the tape alphabet; b ∈ Σ is the symbol denoting blank;
– F = {qm} is the set of accepting final states;
– τ = {R0, . . . , Rl} is the vocabulary of the rs, where for 0 ≤ i ≤ l, the arity

of Ri is ri;
– σ = {R0, . . . , Ru}, where u < l, is the vocabulary of the input structure;
– Rl is the output relation;
– Ω = {α0, . . . , αv} is a finite set of first-order sentences of vocabulary τ ;
– Φ = {γ0, . . . , γw} is a finite set of first-order formulas of vocabulary τ ; and
– δ : Q×Σ×Ω → P(Σ×Q×{R,L}×Φ× τ) is the transition function of M .
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The sentence ϕM expressing acceptance by M on input I ∈ Bσ has the form

∃2·kO ∃2·s·kT0 ∃2·s·kT1 ∃2·s·kTb ∃2·s·kHq0 . . . ∃2·s·kHqm ∃(s+1)·kS0 . . . ∃(s+1)·kSl (ψ),

where ψ is a first-order formula of vocabulary σ ∪ {O, T0, T1, Tb, Hq0 , . . . , Hqm ,
S0, . . . , Sl}. The arity of O is 2 · k; the arity of T0, T1, Tb as well as the arity of
Hqi for 0 ≤ i ≤ m, is 2 · s · k; and the arity of Si for 0 ≤ i ≤ l is ri + s · k. The
intended interpretation of these relation symbols is as follows:

– O is a preorder of k-tuples over I.

Note that, by Theorem 2, there is a preorder ≤k such that the corresponding
equivalence relation is ≡k, and that such preorder is also a linear order over the
set of equivalence classes of k-tuples C determined by ≡k. Thus, with ≤k we can
define a lexicographic linear order of the s-tuples in Cs. Since M runs in time
bounded by (sizek(I))s and visits at most (sizek(I))s cells, we can model time
(t̄) as well as position on the tape (p̄) by s-tuples of equivalence classes in C.
We actually do that by using (s · k)-tuples of elements of the domain I instead
of s-tuples of equivalence classes in C. Under this approach, two (s · k)-tuples
ā = (ā1, . . . , ās) and b̄ = (b̄1, . . . , b̄s) are considered equivalent iff, for 1 ≤ i ≤ s,
their corresponding k-tuples āi and b̄i belong to the same equivalence class, i.e.,
iff āi ≤k b̄i and b̄i ≤k āi.

Having this considerations in mind, we define the intended interpretation of
the remaining relation symbols as follows:

– T0, T1, and Tb are tape relations; for x ∈ {0, 1, b}, Tx(p̄, t̄) indicates that
position p̄ at time t̄ contains x.

– Hq’s are head relations; for q ∈ Q, Hq(p̄, t̄) indicates that at time t̄, the
machine M is in state q, and its head is in position p̄.

– Si’s are rs relations; for 0 ≤ i ≤ l, Si(ā, t̄) indicates that at time t̄, the
relation Ri in the rs contains the ri-tuple ā.

The sentence ψ must now express that when M starts with an empty tape
and an input I in the designated relations of its rs, the relations Tx’s, Hq’s and
Si’s encode its computation, and eventually M reaches an accepting state.

We define ψ to be the conjunction of the following sentences:

– A sentence expressing that O defines a pre-order of k-tuples.
∀x̄(O(x̄, x̄)) “O is reflexive” ∧
∀x̄ȳz̄(O(x̄, ȳ) ∧O(ȳ, z̄)→ O(x̄, z̄)) “O is transitive” ∧
∀x̄ȳ(O(x̄, ȳ) ∨O(ȳ, x̄)) “O is connex”.

– A sentence defining the initial configuration of M .

∃x̄∀ȳ
(
x̄ � ȳ)→

(
Hq0(x̄, x̄) ∧ ∀p̄(Tb(p̄, x̄))

))
“At time 0, M is in state q0, the head is in the left-most position of the tape,
and the tape contains only blanks” ∧
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∃t̄∀x̄
(
t̄ � x̄→

∧
0≤i≤u

(
∀a1 . . . ari(Si(a1, . . . , ari , t̄)↔ Ri(a1, . . . , ari))

)
∧∧

u<i≤l

(
∀a1 . . . ari(¬Si(a1, . . . , ari , t̄))

))
“the relations in the rs hold a τ -structure A which extends I with an empty
relation SA

i for each relation symbol Ri in τ \ σ”.
Here, for x̄ = (x̄1, . . . , x̄s) and ȳ = (ȳ1, . . . , ȳs), where x̄i and ȳi (1 ≤ i ≤ s)
are k-tuples of individual variables, we say that x̄ � ȳ iff(
O(x̄1, ȳ1) ∧ ¬O(ȳ1, x̄1)

)
∨(

O(x̄1, ȳ1) ∧O(ȳ1, x̄1) ∧O(x̄2, ȳ2) ∧ ¬O(ȳ2, x̄2)
)
∨ . . .∨(

O(x̄1, ȳ1) ∧O(ȳ1, x̄1) ∧ . . . ∧O(x̄s−1, ȳs−1) ∧O(ȳs−1, x̄s−1)∧
O(x̄s, ȳs) ∧ ¬O(ȳs, x̄s)

)
∨ x̄ ∼ ȳ,

where x̄ ∼ ȳ is simply O(x̄1, ȳ1) ∧ O(ȳ1, x̄1) ∧ . . . ∧ O(x̄s, ȳs) ∧ O(ȳs, x̄s).
Informally, x̄ � ȳ if x̄ precedes or equals ȳ in the lexicographic order induced
by O, and x̄ ∼ ȳ if they share the same position.

– A sentence stating that in every configuration of M , each cell of the tape
contains exactly one element of Σ.

∀p̄t̄
((
T0(p̄, t̄) ↔ ∀x̄ȳ(x̄ ∼ p̄ ∧ ȳ ∼ t̄→ T0(x̄, ȳ) ∧ ¬T1(x̄, ȳ) ∧ ¬Tb(x̄, ȳ))

)
∧(

T1(p̄, t̄)↔ ∀x̄ȳ(x̄ ∼ p̄ ∧ ȳ ∼ t̄→ T1(x̄, ȳ) ∧ ¬T0(x̄, ȳ) ∧ ¬Tb(x̄, ȳ))
)
∧(

Tb(p̄, t̄)↔ ∀x̄ȳ(x̄ ∼ p̄ ∧ ȳ ∼ t̄→ Tb(x̄, ȳ) ∧ ¬T0(x̄, ȳ) ∧ ¬T1(x̄, ȳ))
))
.

– A sentence stating that at any time the machine is in exactly one state.

∀t̄∃p̄
(∨

q∈Q

(
Hq(p̄, t̄) ∧ ∀x̄(Hq(x̄, t̄) ↔ x̄ ∼ p̄)

))
∧

¬∃p̄t̄x̄ȳ
( ∨

q,q′∈Q,q �=q′

(
Hq(p̄, t̄) ∧ p̄ ∼ x̄ ∧ t̄ ∼ ȳ ∧Hq′(x̄, ȳ)

))
.

– Sentences expressing that the relations Ti’s, Hq’s and Si’s respect the tran-
sitions of M . For every a ∈ Σ, q ∈ Q and α ∈ Ω for which the transition
function δ is defined, we have a sentence of the form∨

(b,q′,m,γ,R)∈δ(q,a,α)

χ(q, a, α, b, q′,m, γ,R),

where χ(q, a, α, b, q′,m, γ,R) is the sentence describing the transition in
which, upon reading a in state q, if α evaluates to true in the τ -structure
A currently held in the rs, then the machine writes b, enters state q′,
makes the move m, and replaces the relation RA by γA in the rs. As-
sume that m = L and Sj is the relation variable which encodes R, we write
χ(q, a, α, b, q′,m, γ,R) as the conjunction of:

∀p̄∀t̄
(
¬(∀x̄(p̄ � x̄)) ∧ Ta(p̄, t̄) ∧Hq(p̄, t̄) ∧ α̂(t̄) →(
Tb(p̄, t̄+ 1) ∧Hq′(p̄− 1, t̄+ 1)∧

∀x̄
(
¬(x̄ ∼ p̄)→

( ∧
i∈{0,1,b} Ti(x̄, t̄+ 1)↔ Ti(x̄, t̄)

))
∧
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∀x1 . . . xrj

(
Sj(x1, . . . , xrj , t̄+ 1)↔ γ̂(x1, . . . , xrj , t̄)∧∧

0≤i≤l,i�=j

(
∀x1 . . . xri(Si(x1, . . . , xri , t̄)↔ Si(x1, . . . , xri , t̄+1)

)))
and

∀p̄∀t̄
(
∀x̄(p̄ � x̄) ∧ Ta(p̄, t̄) ∧Hq(p̄, t̄) ∧ α̂(t̄) →(
Tb(p̄, t̄+ 1) ∧Hq′(p̄, t̄+ 1)∧

∀x̄
(
¬(x̄ ∼ p̄)→

( ∧
i∈{0,1,b} Ti(x̄, t̄+ 1)↔ Ti(x̄, t̄)

))
∧

∀x1 . . . xrj

(
Sj(x1, . . . , xrj , t̄+ 1)↔ γ̂(x1, . . . , xrj , t̄)∧∧

0≤i≤l,i�=j

(
∀x1 . . . xri(Si(x1, . . . , xri , t̄)↔ Si(x1, . . . , xri , t̄+1)

)))
where α̂(t̄) and γ̂(x1, . . . , xrj , t̄) are the formulae obtained by replacing in
the formula α and γ(x1, . . . , xrj ), respectively, each atomic sub-formula of
the form Ri(y1, . . . , yri) (0 ≤ i ≤ l) by Si(y1, . . . , yri , t̄). We use abbrevia-
tions p̄ − 1 and t̄ + 1 for the predecessor of p̄ and the successor of t̄ in the
lexicographic order induced by O, respectively; these are clearly definable in
first-order logic. The second formula above is very similar to the first one,
and handles the case when p̄ is the left-most cell of the tape: then the head
does not move and stays in p.

– Finally, a sentence stating that at some point, M is in an accepting final
state.

∃p̄∃t̄(Hqm(p, t)).

We show next that, M accepts a given σ-structure I iff there are relations
closed under equivalence of FOk-types of tuples as required by the SOω quanti-
fiers in the prefix of ϕM , which assigned to the relation variables O, T0, T1, Tb,
Hq0 , . . . , Hqm , S0, . . . , Sl satisfy ψ.

Let C be the set of equivalence classes of k-tuples on I determined by the
equivalence relation ≡k. Let ≤k be the partial order of Theorem 2 and let “≤k”
be {([(a11, . . . , a1k)], [(a21, . . . , a2k)]) ∈ C2 : (a11, . . . , a1k, a21, . . . , a2k) ∈ ≤k}.
Since the relation “≤k” is a subset of C2, it follows from Fact 11 that there is a
relation with the intended interpretation for O which is closed under ≡2k on I.

Regarding T0, T1, Tb, Hq0 , . . . , Hqm . If M accepts a given σ-structure I, then
for each Ri ∈ {T0, T1, Tb, Hq0 , . . . , Hqm} there is a CRi ⊆ C2·s such that the cor-
responding relation RI

i = {(a11, . . . , a1k, a21, . . . , a2k, . . . , a(2·s)1, . . . , a(2·s)k) ∈
I2·s·k : ([(a11, . . . , a1k)], [(a21, . . . , a2k)], . . . , [(a(2·s)1, . . . , a(2·s)k)]) ∈ CRi} meets
the intended interpretation and, by Fact 11, is closed under ≡2·s·k on I.

For each Ri ∈ τ of arity ri, let Ci be the set of equivalence classes of ri-tuples
determined by ≡k on I. By Fact 12, in every configuration in a computation of
a relational machine M of arity k on an input σ-structure I, every relation Ri of
arity ri in its rs is closed under ≡k on I. Thus, if M accepts a given σ-structure
I, then for each relation variable S0, . . . , Sl used to model the content of the
relational store, there is a CSi ⊆ Ci × Cs such that the corresponding relation
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SI
i = {(a1, . . . , ari , a11, . . . , a1k, a21, . . . , a2k, . . . , as1, . . . , ask) ∈ Iri+s·k :

([(a1, . . . , ari)], [(a11, . . . , a1k)], [(a21, . . . , a2k)], . . . , [(as1, . . . , ask)]) ∈ CSi},
meets the intended interpretation. Again by Fact 11, each of these relations SI

i

is closed under ≡(s+1)·k on I.
We conclude that, for every I ∈ Bσ, I |= ϕM iff M accepts I. ��

5.1 SOω Captures the Relational Polynomial-Time Hierarchy

We show in this section the exact correspondence between the prenex fragments
of SOω and the levels of the relational polynomial-time hierarchy.

To prove the following lemma, we adapt the strategy used for Turing machines
in [9] to the case of relational machines.

Lemma 3. If M is a nondeterministic relational machine with an oracle A in
ΣPr

m , for some m ≥ 0, then there is a nondeterministic relational machine M ′

which is equivalent to M and which, in any computation, asks at most one query
to an oracle A′ which is also in ΣPr

m .

Proof. We assume that M = 〈Q,Σ, δ, q0, b, F, σ, τ, T,Ω, Φ〉 works in nondeter-
ministic time bounded by (sizek(I))s for some s ≥ 1 and input relational
structure I of vocabulary σ = {E1, . . . , El}. We also assume that the subset
of distinguished oracle relation symbols in the vocabulary τ of M is σo =
{Ro

1, . . . , R
o
n}, where for 1 ≤ i ≤ n, the arity of Ro

i is ri. We denote as MA
the relational machine in ΣPr

m which decides A. We assume that the arity of MA
is k′ and that it works in time bounded by (sizek′(Io))s′

for some s′ ≥ 1 and
input relational structure Io of vocabulary σo.
M ′ works as follows. First, it guesses a sequence of oracle queries, i.e., a

sequence of σo-structures, as well as their corresponding answers.M ′ does this by
guessing and writing over its Turing machine tape a sequence of tuples of the form
((ā1, . . . , ān), A), where A is either Y or N and for 1 ≤ i ≤ n, āi ∈ {0, 1}sizeri

(I).
Each n-tuple (ā1, . . . , ān) represents a query to the oracle and A is the answer
to that query. The σo-structure corresponding to a given n-tuples (ā1, . . . , ān) is
obtained by interpreting Ro

i ∈ σo with the following corresponding relation

{b̄ ∈ (dom(I))ri : b̄ is in the j-th equivalence class in the order given by ≤ri

and the j-th component of āi equals 1}.
Note that, as shown in the proof of Proposition 3, given a tuple āi ∈ {0, 1}sizeri

(I),
M ′ can compute the corresponding relation and store it in its rs working in time
bounded by a polynomial in sizeri(I).

Then, M ′ proceeds as M , except that every time that M makes a query to
the oracle, M ′ just takes the answer guessed for that query at the beginning of
the computation.

Let us fix an arbitrary computation ofM ′ on the input structure I. At the end
of the computation, M ′ must check that the guessed queries match the sequence
of real queries of M in the fixed computation, and that the guessed answers for
those queries coincide with the actual answers from the oracle A. If any of those
conditions is not met, M ′ stops in a rejecting state.
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To check whether the guessed yes answers are correct, M ′ simply takes each
guessed tuple of the form ((ā1, . . . , ān), Y ), stores their corresponding relations
in its rs, and works as MA to check whether the structure of domain dom(I)
formed by those relations, is in the oracle A. M ′ does not need to call an oracle
to do this since the answer guessed for those queries is yes.

As to the queries for which the guessed answer is no, M ′ does need to use
an oracle, but it suffices to make just one query to it. To do this, M ′ encodes
the guessed oracle queries with guessed answers no as a structure of vocabulary
σN = {Eo

1 , . . . , E
o
l , S

o
1 , . . . , S

o
n}, where for 1 ≤ i ≤ j, arity(Eo

i ) = arity(Ei), and
for 1 ≤ i ≤ n, arity(So

i ) = ri + s · k. Actually, σN is the set of distinguished
oracle relation symbols in the vocabulary τ ′ of the rs of M ′.

Let (ā11, . . . , ā1n), . . . , (ām1, . . . , āmn) be the sequence of tuples corresponding
to the queries with guessed negative answers, for each 1 ≤ u ≤ n, M ′ stores in
its rs the following relation:

So
u :=

⋃
1≤i≤m{(b̄, t̄) ∈ (dom(I))ru+s·k : b̄ is in the j-th equivalence class in

the order given by ≤ru , the j-th component of āiu equals 1,
t̄ and belongs to the i-th equivalence class in the order given
by ≤s·k}.

Furthermore, for 1 ≤ i ≤ l, M ′ stores in Eo
i in its rs the relation EI

i in the input
structure I. Then it asks the oracle A′ the query represented by the σN -structure
of domain dom(I) formed by those relations. If the answer of the oracle A′ is
yes, then the no answers guessed by M ′ are all correct.

Let J ∈ BσN , let Jσ be the structure J restricted to the vocabulary {Eo
1 , . . . ,

Eo
l }, and let C be the set of equivalence classes of k-tuples determined by the

equivalence relation ≡k on Jσ. For ([t̄1], . . . , [t̄s]) ∈ Cs and 1 ≤ i ≤ n, we denote
as T J

i,([t̄1],...,[t̄s]) the following relation:

{(a1, . . . , ari) ∈ (dom(J))ri : for t̄′1 ∈ [t̄1], . . . , t̄′s ∈ [t̄s],

it holds that J |= So
i (a1, . . . , aoi , t̄

′
1, . . . , t̄

′
s)}

Accordingly, we denote as J(t̄1,...,t̄s) the structure of vocabulary σo and domain
dom(J) which is obtained by interpreting the relation symbols Ro

1, . . . , R
o
n with

the relations T J
1,([t̄1],...,[t̄s]), . . . T

J
n,([t̄1],...,[t̄s])

, respectively.
A given structure J ∈ BσN belongs to the new oracle A′ iff, for every s-tuple

([t̄1], . . . , [t̄s]) of equivalence classes in Cs, it holds that J(t̄1,...,t̄s) 
∈ A.
The Machine MA′ which decides the relational language A′ works as follows:

1. MA′ computes the preorder ≤k of Theorem 2 on Jσ.
2. Using ≤k, MA′ computes sizek(Jσ).
3. Let x̄ = (x̄1, . . . , x̄s) and ȳ = (ȳ1, . . . , ȳs) be (k · s)-tuples, we say that x̄ � ȳ

if ([x̄1], . . . , [x̄s]) precedes or equals ([ȳ1], . . . , [ȳs]) in the lexicographic order
induced by ≤k on Cs. If x̄ � ȳ and ȳ � x̄, then we say that x̄ ∼ ȳ.
X := ∀ȳ(x̄ � ȳ);
Y := ¬x̄ = x̄;
While ∃x̄(¬Y (x̄));
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Begin
R1 := ∃x̄(X(x̄) ∧ So

1(y1, . . . , yr1 , x̄));
...
Rn := ∃x̄(X(x̄) ∧ So

n(y1, . . . , yrn , x̄));
MA′ works asMA taking as input the σo-structure of domain dom(J)
formed by the relations R1, . . . , Rn held in its rs;
If “MA accepts” then
MA′ stops in a rejecting state;

Y := Y (x̄) ∨X(x̄);
X := ¬Y (x̄)∧

∀ȳ
(
(Y (ȳ) ∧ ∀z̄(Y (z̄) → z̄ � ȳ)) →
(ȳ � x̄ ∧ ∀z̄((ȳ � z̄ ∧ z̄ � x̄) → (ȳ ∼ z̄ ∨ z̄ ∼ x̄)))

)
;

End;
MA′ stops in an accepting state.

Since the “while loop” in the previous algorithm is executed (sizek (Jσ))s

times, it is not difficult to see that MA′ works in nondeterministic time bounded
by a polynomial in sizek′(J), where k′ ≥ s · k is the arity of MA′ . ��

Theorem 13. For m ≥ 1, Σ1,ω
m captures ΣPr

m .

Proof. a) =⇒: First, we show that for every relational vocabulary σ, every
Σ1,ω

m [σ]-sentence ϕ can be evaluated in ΣPr
m .

Suppose that ϕ is ∃k11X11 . . . ∃k1s1X1s1∀k21X21 . . . ∀k2s2X2s2∃k31X31 . . . ∃k3s3

X3s3 . . . Q
km1Xm1 . . . Q

kmsmXmsm(ψ), where Q is either ∃ or ∀, depending on
whether m is odd or even, respectively, and ψ is a first-order formula of vocab-
ulary σ ∪ {X11, . . . , X1s1 , X21, . . . , X2s2 , . . . , Xm1, . . . , Xmsm}.

We build a nondeterministic relational oracle machine Mϕ which evaluates
ϕ on input structures of vocabulary σ. For 1 ≤ j ≤ s1, let k′1j ≥ 2k1j be the
arity of the relational machine M≤k1j of Lemma 2 which computes the preorder
≤k1j of Theorem 2. The arity k of Mϕ is max ({k′11, . . . , k′1s1

}). The vocabulary
τ of the relational store is σ ∪ σom−1 ∪ {≤k11 , . . . ,≤k1s1 , S1, . . . , Ss1}, where for
1 ≤ j ≤ s1, the arity of ≤k1j is 2k1j and the arity of Sj is k1j , and σom−1 =
{Rom−1 : R ∈ σ}∪{Xom−1

11 , . . . , X
om−1
1s1

} is the set of distinguished oracle relation
symbols. For every R ∈ σ, the arity of Rom−1 is the same as the arity of R, and
for 1 ≤ j ≤ s1, the arity of Xom−1

1j is the same as the arity r1j ≤ k1j of X1j .
Let ϕ′

m−1 be the following sentence:

∃k21X21. . .∃k2s2X2s2¬(∃k31X31. . .∃k3s3X3s3 . . .Q
km1Xm1 . . . Q

kmsmXmsm(ψ′
m−1)),

where ψ′
m−1 is ψ with every occurrence of a relation symbol R ∈ σ replaced

by the corresponding relation symbol Rom−1 ∈ σom−1 , and every occurrence of
a relation variable X1j (1 ≤ j ≤ s1) replaced by the corresponding relation
symbol Xom−1

1j ∈ σom−1 . The oracle Cm−1 of Mϕ is the relational language {A ∈
Bσom−1 : A |= ϕ′

m−1}.
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On an input structure I, Mϕ works as follows:

1. For every 1 ≤ j ≤ s1, Mϕ builds the preorder ≤k1j of Theorem 2 in its rs.
2. Mϕ computes sizek1j (I) for every 1 ≤ j ≤ s1.
3. For every 1 ≤ j ≤ s1, Mϕ guesses and writes over its Turing machine tape a

tuple āj ∈ {0, 1}sizek1j
(I).

4. Using the binary tuples guessed in the previous step, Mϕ generates, for every
1 ≤ j ≤ s1, a relation which is placed in the distinguish oracle relation Xo

1j

of its rs and is closed under the equivalence relation ≡k1j in I. Mϕ works by
storing in Xo

1j the tuples in all l-th equivalence classes in the order given by
≤k1j for which the l-th component of āj equals 1.

5. Finally, for every R ∈ σ, Mϕ stores the relation RI into the corresponding
oracle relation Rom−1 and moves to the oracle query state q?. Mϕ accepts
the input structure I iff the relational structure of domain I formed by the
distinguished set of oracles relations currently held in its rs does not belongs
to the oracle set Cm−1, i.e., iff Mϕ transfers from the state q? into the state
qNO.

As shown in the proof of Proposition 3, Mϕ can perform tasks 1 to 4 working
in time bounded by a polynomial in sizek(I). Furthermore, task 5 can clearly be
performed in constant time by Mϕ.

Therefore, it only remains to show that the oracle Cm−1 is in ΣPr
m−1, i.e., that

there is a nondeterministic relational machine Mϕ′
m−1

such that L(Mϕ′
m−1

) =
Cm−1 and L(Mϕ′

m−1
) ∈ ΣPr

m−1.
Mϕ′

m−1
evaluates ϕ′

m−1 on input structures of vocabulary σom−1 . The vocab-
ulary τ ′1 of the relational store is σom−1 ∪ σom−2 ∪ {≤k21 , . . . ,≤k2s2 , S1, . . . , Ss2},
where for 1 ≤ j ≤ s2, the arity of ≤k2j is 2k2j and the arity of Sj is k2j , and
σom−2 = {Rom−2 : R ∈ σom−1} ∪ {Xom−2

21 , . . . , X
om−2
2s2

} is the set of distinguished
oracle relation symbols. For every R ∈ σom−1 , the arity of Rom−2 is the same as
the arity of R, and for 1 ≤ j ≤ s2, the arity of Xom−2

2j is the same as the arity
r2j ≤ k2j of X2j.

The oracle Cm−2 of Mϕ′
m−1

is the relational language {A ∈ Bσom−2 : A |=
ϕ′

m−2}, where ϕ′
m−2 is ∃k3

1X31 . . . ∃k3
s3X3s3 . . .Q

km
1 Xm1 . . . Q

km
smXmsm(ψ′

m−2).
Here ψ′

m−2 is ψ′
m−1 with every occurrence of a relation symbol R ∈ σom−1

replaced by the corresponding relation symbol Rom−2 ∈ σom−2 , and every oc-
currence of a relation variable X2j (1 ≤ j ≤ s2) replaced by the corresponding
relation symbol Xom−2

2j ∈ σom−2 .
The way in which the machine Mϕ′

m−1
works is exactly the same as the

way in which the original machine Mϕ works, i.e., Mϕ′
m−1

executes steps 1
to 5 adapted to the vocabulary τ ′1 of its rs and for 1 ≤ j ≤ s2. Therefore,
for every input structure I′ of vocabulary σom−1 , Mϕ′

m−1
works in nondeter-

ministic relational time bounded by a polynomial in sizek′(I′), where k′ =
max ({k′21, . . . , k′2s2

})) is the arity of Mϕ′
m−1

, and for 1 ≤ j ≤ s2, k′2j ≥ 2k2j is



The Relational Polynomial-Time Hierarchy and Second-Order Logic 73

the arity of the relational machine M≤k2j of Lemma 2 which computes the pre-
order ≤k2j of Theorem 2.

This process continues in the same way for the blocks 3 to m−1 of quantifiers
in ϕ. Since for the last block m of quantifiers the resulting ϕ′

1 is either

∃km
1 Xm1 . . . ∃km

smXmsm(ψ′
1) or ∃km

1 Xm1 . . . ∃km
smXmsm(¬ψ′

1),

it follows by Theorem 7 that the oracle C1 of Mϕ′
2

(i.e., the relational language
{A ∈ Bσo1 : A |= ϕ′

1}) is in NPr = ΣPr
1 .

Hence, ϕ can be evaluated in ΣPr
m .

b) ⇐=: Next, we show that every ΣPr
m property of finite relational structures

can be expressed in Σ1,ω
m .

We use induction on m. The base case is Proposition 4. Now consider a
Boolean query q : Bσ → {0, 1} in ΣPr

m where m > 1. Let M be the nonde-
terministic relational machine with an oracle in ΣPr

m−1 which computes q. Let
{I ∈ Bσo : qo(I) = 1}, where σo is the set of distinguished oracle relation symbols
of M and qo is a boolean query in ΣPr

m−1, be the oracle of M .
By inductive hypothesis, for every boolean query qi in ΣPr

m−1, there is a sen-
tence αqi ∈ Σ

1,ω
m−1 which express qi. In particular, there is a sentence αqo ∈ Σ

1,ω
m−1

of vocabulary σo, which express the boolean query qo. Let αqo be σo-sentence
∃k21X21 . . . ∃k2s2X2s2∀k31X31 . . . ∀k3s3X3s3 . . . Q

km1Xm1 . . . Q
kmsmXmsm(ψo),

whereQ is either ∃ or ∀, depending on whetherm is odd or even, respectively, and
ψo is a first-order sentence of vocabulary σo∪{X21, . . . , X2s2 , X31, . . . , X3s3 , . . . ,
Xm1, . . . , Xmsm}.

We show how to modify the formula ϕM in Proposition 4, i.e., the formula
corresponding to the nondeterministic relational machine, to reflect the interac-
tion of M with its oracle. We assume that M works in time (sizek(I))s for some
s ≥ 1 and I ∈ Bσ.

First, we add to the prefix of ϕM the existential quantification ∃(s+1)·kSo
1 . . .

∃(s+1)·kSo
n. Let roi denote the arity of the distinguished oracle relation Ro

i ∈ σo =
{Ro

1, . . . , R
o
n}. For 1 ≤ i ≤ n, the arity of the relation variable So

i is roi + s · k.
The intended interpretation of So

i (ā, t̄) is that at time t̄, the distinguished oracle
relation Ro

i in the rs contains the roi -tuple ā.
The sub-formula ψ of ϕM treats the variables So

1 , . . . , S
o
n corresponding to

the distinguished oracle relations in the rs of M in exactly the same way as the
variables S1, . . . , Sl which correspond to the other relations in the rs of M . We
only need to add a special case to the sub-formula of ψ which express that the
relations Ti’s, Hq’s, Si’s and So

i ’s respect the transition function of M . When M
is in the oracle query state q?, χ(q?, a, α, b, q′,m, γ,R) is the sentence describing
the transition in which upon entering the query state q?, the machine moves
to state qYES if the σo-structure held in the rs is in the oracle of M , or to
state qNO if it is not. W.l.o.g., we assume that the contents of the rs as well
as of the working tape of M and the position of its read/write head remain
unchanged.
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The more “natural” way of expressing χ(q?, a, α, b, q′,m, γ,R) is probably as
follows:

∀p̄∀t̄
(
Hq?(p̄, t̄)→

(
α̂qo(t̄)→ HqYES (p̄, t̄+ 1)

)
∧

(
¬α̂qo (t̄)→ HqNO (p̄, t̄+ 1)

)
∧

∀x̄
( ∧

i∈{0,1,b} Ti(x̄, t̄+ 1)↔ Ti(x̄, t̄)
)
∧∧

0≤i≤l

(
∀x1 . . . xri(Si(x1, . . . , xri , t̄)↔ Si(x1, . . . , xri , t̄+ 1))

)
∧∧

0≤i≤n

(
∀x1 . . . xro

i
(So

i (x1, . . . , xro
i
, t̄) ↔ So

i (x1, . . . , xro
i
, t̄+1))

))
where α̂qo(t̄) is the formula obtained by replacing in αqo each atomic sub-
formula of the form Ro

i (y1, . . . , yro
i
) (0 ≤ i ≤ n) by So

i (y1, . . . , yro
i
, t̄). But, we

need the resulting formula to be in prenex normal form. Unfortunately, equiv-
alences such as ∀x Q γ(x) ↔ ∀X Q

(
∃!xX(x) → ∀x(X(x) → γ(x))

)
, where

Q stands for an arbitrary sequence of first- and second-order quantifiers and
∃!xX(x) means “there exists exactly one x such that X(x)”, are no longer true
for SOω. Not all elements of the domain are distinguishable from each other
in FOk for a fixed k. Thus, it may well happen that there is an element a in
the domain of a given structure I such that {a} is not closed under under ≡k

on I.
In order to write χ(q?, a, α, b, q′,m, γ,R) in a form such that the SOω quan-

tifiers in αqo can be moved to the prefix of ϕM , we use Lemma 3 . That is, we
assume that in any computationM makes at most one query to its oracle. Under
this assumption, we can then write χ(q?, a, α, b, q′,m, γ,R) as the conjunction
of:

∃k21X21 . . . ∃k2s2X2s2∀k31X31 . . . ∀k3s3X3s3 . . . Q
km1Xm1 . . . Q

kmsmXmsm

∀p̄∀t̄
(
Hq?(p̄, t̄) ∧ ψ̂o(t̄)→

HqYES (p̄, t̄+ 1) ∧ ∀x̄
( ∧

i∈{0,1,b} Ti(x̄, t̄+ 1)↔ Ti(x̄, t̄)
)
∧∧

0≤i≤l

(
∀x1 . . . xri(Si(x1, . . . , xri , t̄)↔ Si(x1, . . . , xri , t̄+ 1))

)
∧

∧
0≤i≤n

(
∀x1 . . . xro

i
(So

i (x1, . . . , xro
i
, t̄) ↔ So

i (x1, . . . , xro
i
, t̄+1))

))
and

∀k21X ′
21 . . . ∀k2s2X ′

2s2
∃k31X ′

31 . . . ∃k3s3X ′
3s3
. . . Qkm1X ′

m1 . . . Q
kmsmX ′

msm

∀p̄∀t̄
(
Hq?(p̄, t̄) ∧ ¬ψ̂′

o(t̄)→

HqNO (p̄, t̄+ 1) ∧ ∀x̄
(∧

i∈{0,1,b} Ti(x̄, t̄+ 1)↔ Ti(x̄, t̄)
)
∧∧

0≤i≤l

(
∀x1 . . . xri(Si(x1, . . . , xri , t̄)↔ Si(x1, . . . , xri , t̄+ 1))

)
∧∧

0≤i≤n

(
∀x1 . . . xro

i
(So

i (x1, . . . , xro
i
, t̄) ↔ So

i (x1, . . . , xro
i
, t̄+1))

))
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where ψ̂o(t̄) is the formula obtained by replacing in ψo each atomic sub-formula
of the form Ro

i (y1, . . . , yro
i
) (0 ≤ i ≤ n) by So

i (y1, . . . , yro
i
, t̄), and ψ̂′

o(t̄) is
the formula obtained by replacing in ψ̂o each occurrence of a relation variable
Xij ∈ {X21, . . . , X2s2 , X31, . . . , X3s3 , . . . , Xm1, . . . , Xmsm} by X ′

ij . Note that for
the sentence above, we use the fact that ¬αqo is equivalent to

∀k21X21 . . . ∀k2s2X2s2∃k31X31 . . . ∃k3s3X3s3 . . .Q
km1Xm1 . . . Q

kmsmXmsm(¬ψo).

It is not difficult to see that the SOω quantifiers in the sentence above, can now
be safely moved to the prefix of ψM and rearranged in such a way that the
resulting formula is in Σ1,ω

m . ��
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Abstract. Knowledge discovery and data mining deal with the task of finding
useful information and especially rules in unstructured data. Most knowledge
discovery approaches associate conditional probabilities to discovered rules in
order to specify their strength. In this paper, we propose a qualitative approach to
knowledge discovery. We do so by abstracting from actual probabilities to quali-
tative information and in particular, by developing a method for the computation
of an ordinal conditional function from a possibly noisy probability distribution.
The link between structural and numerical knowledge is established by a pow-
erful algebraic theory of conditionals. By applying this theory, we develop an
algorithm that computes sets of default rules from the qualitative abstraction of
the input distribution. In particular, we show how sparse information can be dealt
with appropriately in our framework. By making use of the duality between in-
ductive reasoning and knowledge discovery within the algebraic theory of condi-
tionals, we can ensure that the discovered rules can be considered as being most
informative in a strict, formal sense.

1 Introduction

Knowledge discovery is the overall process to extract new and useful information from
statistical data, with a focus on finding patterns and relationships that reveal generic
knowledge, i. e., knowledge that is not specific to a certain situation. Moreover, these
relationships should be presented to the user in an intelligible manner. This makes rules
appropriate candidates to encode knowledge that is searched for, as they establish (often
generic) relationships between isolated facts and are easily comprehensible for human
beings. Usually, a conditional probability is associated with each rule by the knowledge
discovery process to specify the strength, or the confidence of the rule.

However, while probabilities are a really expressive means to represent knowledge,
they are often of only limited use when it comes to commonsense reasoning. First,
there is no straightforward way to process probabilistic information. For instance, if the
rules “If symptom A then disease D with probability 0.632” and “If symptom B then
disease D with probability 0.715” are shown to the user, what should he believe if the
patient he is facing has symptomsA andB? Second, while probabilities are appreciated
for their (seemingly objective) preciseness, users would not feel comfortable if they
had to distinguish sharply between, say, 0.715 and 0.721. Moreover, statistical data are
often noisy and may show particularities of the population they were taken from, which
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does not match the aim of discovering generic, context-independent knowledge. This
suggests that precise probabilistic information is neither completely satisfactory nor
useful for knowledge discovery.

In this paper, we propose to solve such problems by extracting more coarse-grained
rules from data which are only equipped with an order of magnitude of the correspond-
ing probability. Such qualitative rules could be used to reveal plausible relationships to
the user, or even as default rules for commonsense reasoning, by applying one of the
well-known nonmonotonic inference formalisms (cf. e.g. [1,2,3]). This perspective of
discovering rules from data and feeding them into an inference engine to make induc-
tive reasoning possible will play a decisive part for the methodology to be presented in
this paper. More precisely, we will consider knowledge discovery and inductive reason-
ing as reverse processes (illustrated in Figure 1) – knowledge discovery extracts most
relevant partial knowledge that may serve as a basis for further reasoning from fre-
quency distributions representing complete probabilistic information, while inductive
model-based reasoning builds up a complete epistemic model from partial knowledge
in a knowledge base.

Fig. 1. Knowledge discovery and inductive reasoning as reverse processes

We build upon previous work. In [4,5], these ideas have been developed and imple-
mented in a fully probabilistic framework. But the core methodology used in these
papers is based on structural, algebraic techniques for abstract conditionals and can
also be applied in a qualitative framework. However, we first have to transform proba-
bilistic information obtained from data to qualitative rankings. For this, we modify the
well-known approach for infinitesimal probabilities [6,1] to obtain a so-called ordinal
conditional function [7] which assigns qualitative degrees of disbelief, or rankings, re-
spectively, to propositions and conditionals. The level of qualitative abstraction of prob-
abilities is determined by a parameter ε that specifies a measure of similarity between
probabilistic values, according to the needs of the user.

Our approach offers a couple of nice advantages. First, the same methodology is
used both for learning and reasoning, handling structural knowledge in a profound al-
gebraic way. Second, the notion of relevance which is crucial for knowledge discovery
can be given a precise meaning – rules are relevant wrt. a given set of (already dis-
covered) rules, if they provide additional information for the inductively built model.
Third, the qualitative information derived from data reflects an intuitive similarity of the
probabilities, different from the approach in [8] in which sums of probabilities have to
be used.
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The outline of the paper is as follows. In the next section, we will recall basic facts
on probabilistic reasoning and ordinal conditional functions. In section 3, we present
our approach to extract qualitative information from statistical data. We also propose
a heuristic how to find a proper abstraction parameter ε. Section 4 describes the core
methodology which can be used for inductive representation and knowledge discovery
and that is applied in section 5 for the knowledge discovery task. Based on this theo-
retical work, an algorithm for discovering default rules in statistical data is represented
in section 6. Section 7 concludes the paper with a summary and an outlook on further
work.

2 Inductive Reasoning with Probabilities and Rankings

We consider a propositional framework over a finite set V = {V1, V2, . . .} of (multi-
valued) propositional variables Vi with finite domains. For each variable Vi ∈ V , the
values are denoted by vi. In generalizing the bivalued propositional framework, we call
expressions of the form Vi = vi literals, and abbreviate them by vi. The language L
consists of all formulas A built by conjoining finitely many literals by conjunction (∧),
disjunction (∨), and negation (¬) in a well-formed way. The conjunction operator, ∧,
will usually be omitted, so AB will mean A ∧B, and negation is indicated by overlin-
ing, i. e., A = ¬A. An elementary conjunction is a conjunction consisting of literals,
and a complete conjunction is an elementary conjunction where each variable from V
is instantiated by exactly one value. Let Ω denote the set of complete conjunctions of
L. Ω can be taken as the set of possible worlds ω, providing a complete description of
each possible state, and hence corresponding to elementary events in probability theory.

Conditionals are written in the form (B|A), with antecedents, A, and consequents,
B, both formulas in L, and may be read as uncertain rules of the form if A then B.
Let (L|L) denote the set of all conditionals over L. Single-elementary conditionals are
conditionals whose antecedents are elementary conjunctions, and whose consequents
consist of one single literal. To provide semantics for conditionals, a richer epistemic
framework is needed than a plain bivalued semantics. Basically, for a conditional (B|A)
to be accepted, its confirmation, AB, must be more probable, plausible etc. than its
refutation, AB. Moreover, numerical degrees of probability, plausibility and the like
can be assigned to conditionals to specify the strength with which they are believed,
according to the chosen epistemic framework. In this paper, we will use probabilities to
model a fully quantitative frame, and so-called ordinal conditional functions, OCFs, (or
simply ranking functions) to model a qualitative, respectively semi-quantitative frame.
We will briefly summarize basic facts on both modelling frames in the following. We
will also address the problem which is crucial to this paper: Given partial information
in form of a conditional knowledge base, how to obtain an adequate complete model
that can be used for inductive reasoning?

Within a probabilistic framework, conditionals can be quantified and interpreted
probabilistically via conditional probabilities:

P |= (B|A)[x] iff P (A) > 0 and P (AB) = xP (A)

for x ∈ [0, 1]. A conditional probabilistic knowledge base is a set Rprob =
{(B1|A1)[x1], . . . , (Bn|An)[xn]} of probabilistic conditionals.
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Suppose such a conditional probabilistic knowledge base Rprob is given. For in-
stance, Rprob may describe the knowledge available to a physician when he has to
make a diagnosis. Or, Rprob may express commonsense knowledge like “Students are
young with a probability of (about) 80 %” and “Singles (i.e. unmarried people) are
young with a probability of (about) 70 %”, this knowledge being formally expressed
byRprob = {(young |student)[0.8], (young |single)[0.7]}. Usually, such rule bases rep-
resent incomplete knowledge, in that there are a lot of probability distributions apt to
represent them. So learning, or inductively representing, respectively, the rules means
to take them as a set of conditional constraints and to select a unique probability distri-
bution as a “best” model which can be used for queries and further inferences. Paris [9]
investigates several inductive representation techniques and proves that the principle
of maximum entropy, (ME-principle) yields the only method to represent incomplete
knowledge in an unbiased way, satisfying a set of postulates describing sound com-
monsense reasoning. The entropyH(P ) of a probability distribution P is defined as

H(P ) = −
∑
ω

P (ω) logP (ω)

and measures the amount of indeterminateness inherent in P . Applying the principle of
maximum entropy then means to select the unique distribution P ∗ = ME(Rprob) that
maximizes H(P ) subject to P |= Rprob. In this way, the ME-method ensures that no
further information is added, so that the knowledgeRprob is represented most faithfully.
ME(Rprob) can be written in the form

ME(Rprob)(ω) = α0

∏
1 ≤ i ≤ n
ω |= AiBi

α1−xi

i

∏
1 ≤ i ≤ n

ω |= AiBi

α−xi

i (1)

with the αi’s being chosen appropriately so as to satisfy all of the conditional con-
straints in Rprob (cf. [10]); ME(Rprob) is called the ME-representation of Rprob. The
ME-principle provides a most convenient and theoretically sound method to represent
incomplete probabilistic knowledge1 and for high-quality probabilistic reasoning (cf.
[11]).

A purely probabilistic representation gives precise numerical values to all proposi-
tions and conditionals of the underlying language. This can be problematic with respect
to two points: First, when the aim is to model subjective beliefs of an expert or an agent,
precise probabilities are hard to specify. Subjective probabilities are more or less rough
guidelines that are based on an agent’s experience. Second, even objective probabili-
ties derived from statistical data may not represent a completely accurate picture of the
world. Statistical data can be noisy and only reflect a snapshot of the world, which can
be quite accidental. Therefore, in this paper, we are interested in the qualitative knowl-
edge that underlies some given probabilistic information. To represent such qualitative
structures, we use ordinal conditional functions, OCFs, as introduced by Spohn [7] as
a qualitative abstraction of probability functions.

1 Efficient implementations of ME-systems can be found via
www.informatik.fernuni-hagen.de/pi8/research/projects.html and
www.pit-systems.de
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Definition 1. An ordinal conditional function (or ranking function) κ is a function κ :
Ω → N ∪ {∞} with κ−1(0) 
= ∅.

An OCF κ assigns a degree of implausibility (or ranking value) to each world ω: The
higher κ(ω), the less plausible is ω. A world ω with κ(ω) = 0 is regarded as being
completely normal (most plausible), and for a consistent modelling, there has to be at
least one such world. For formulasA ∈ L, a ranking is computed via

κ(A) =
{

min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

.

So we have κ(A∨B) = min{κ(A), κ(B)} and in particular, κ(A∨A) = 0. The belief
in (or acceptance of) a formula A is defined as

κ |= A iff κ(A) > 0,

i. e., κ(A) = 0 is necessary but not sufficient to believe A, because κ(A) might be 0 as
well; but κ(A) > 0 is sufficient, since it implies κ(A) = 0.

Similar to the probabilistic framework, conditionals can be quantified. An OCF κ is
extended to conditionals by setting

κ(B|A) =
{
κ(AB) − κ(A) if κ(A) 
= ∞
∞ otherwise

,

and a conditional is accepted by κ,

κ |= (B|A) iff κ(AB) < κ(AB) iff κ(B|A) > 0.

As usual, a proposition A is identified with the conditional (A|�), hence κ |= (A|�)
iff κ(A) > κ(A) = 0, in accordance with what was said above.

The acceptance relation for quantified OCF-conditionals (B|A)[m] is defined by
using the difference between κ(AB) and κ(AB):

κ |= (B|A)[m] iff κ(AB) +m = κ(AB) iff κ(B|A) = m, m ∈ N,m ≥ 1. (2)

Thus, if (B|A) is believed with a degree of belief m then verifying the conditional ism
degrees more plausible than falsifying it. So, κ |= (B|A)[1] expresses belief in (B|A),
but only to the smallest possible degree. For a propositional fact A, this yields

κ |= A[m] iff κ(A) = m.

Both qualitative and quantitative OCF-conditionals can be used as default rules for
commonsense reasoning [1,11].

Ranking functions provide a perfect framework for qualitative reasoning, as they
allow us to handle conditionals in a purely qualitative manner, but also leave room
to take more precise, quantitative information into account. However, even numerical
information merely expresses an order of magnitude of probabilities; this will be made
more precise in the following section.
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Moreover, in a qualitative framework with ordinal conditional functions, a similar
concept as an ME-representation can be defined in order to express a certain “well-
behavedness” of an OCF with respect to a set of OCF-conditionals [11]. We will come
back to these issues and present said concept in section 4. In the next section we will
first have a look on how to derive an OCF from an empirically obtained probability
distribution.

3 Deriving Qualitative Information from Statistical Data

Let P be a probability distribution over V that could have been collected via a statistical
survey. In this paper we are interested in the qualitative structure that underlies the
probabilities in P . So we represent P by qualitative probabilities yielding an ordinal
conditional function that approximates the quantitative structure in P .

For this reason we start by representing a probability of a specific world ω as polyno-
mial in a fixed base value ε in the spirit of [1]. Using this base representation, the order
of magnitude of a probability can be represented only by the corresponding exponents
and different probabilities can be compared by these exponents yielding a qualitative
abstraction of the original values.

Definition 2. Let ε ∈ (0, 1) be a base value to parameterize probabilities. Then a
probability value P (ω) can be expressed as a polynomial in ε ,

Pε(ω) = a0ε
0 + a1ε

1 + a2ε
2 + . . . ,

with appropriate coefficients ai ∈ N respecting 0 ≤ ai < ε−1 for all i to match the
value P (ω).

Due to the restriction 0 ≤ ai < ε−1 the above definition is sound and uniquely deter-
mines a base representation Pε(ω) for given P (ω) and ε with Pε(ω) = P (ω).

Example 1. Let ε = 0.3. Then the probability P (ω1) = 0.171 is written as a polyno-
mial Pε(ω1) = 0 · 0.30 + 0 · 0.31 + 1 · 0.32 + 3 · 0.33 in ε.

Observe that in the above approach the value of a0 is always zero, except for the case
that the world ω has a probability of 1, which is unlikely the case in real world sce-
narios. Furthermore the above definition differs from the definition of polynomial base
representations in [1] in the sense, that Goldszmidt and Pearl implicitly use negative
coefficients for their base representation, representing probabilities as polynomials of
the form P ′

ε(ω) = 1 − aε or P ′
ε(ω) = aε2 − bε4. However, an additive represen-

tation of positive values like probabilities seems more appropriate for our intentions.
Nonetheless, Goldsmizdt and Pearl restrict their attention on qualitative abstractions
of probabilities to the case of infinitesimal bases yielding the following definition of a
complete translation of all probability values into rankings.

Definition 3 (see [1]). Let P be a probability distribution and let the probability P (ω)
be written as a polynomialP ′

ε(ω) in ε with an infinitesimal ε. A ranking function κP
0 (ω)

is defined as follows

κP
0 (ω) =

{
min{n ∈ N | limε→0

P ′
ε(ω)
εn 
= 0} if P ′

ε(ω) > 0
∞ if P ′

ε(ω) = 0
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The general idea of the above definition is to capture the most significant term of the
base representation of a probability of a world ω, i. e., the first coefficient ai that differs
from zero, and use this value as the rank of ω

κP
0 (ω) = min{i | ai 
= 0}, Pε(ω) = a0ε

0 + a1ε
1 + . . . (3)

In this paper, we use this idea for a fixed value ε for the base representation and take
this value throughout the process of qualitative knowledge discovery as an indicator for
the granularity of the qualitative probabilities. Given a fixed base value ε, we determine
the most significant term of a base representation with respect to ε and use this value as
a rank value for an OCF κ̃P

ε as in equation (3). More specifically, let ω be a world and
P (ω) its (empirical) probability. From now on let ε ∈ (0, 1) be a fixed base value and
let

Pε(ω) = a0ε
0 + a1ε

1 + a2ε
2 + . . .

be the base representation of P (ω) according to Definition 2. We are looking for the
first ai that differs from zero to define the rank of ω:

κ̃P
ε (ω) = min{i | ai 
= 0} .

Let i satisfy ai 
= 0. Then it holds that

P (ω) ≥ aiε
i ≥ εi

becauseai is a natural number and ai > 0. From this observation, it follows immediately

P (ω) ≥ εi

⇔ logP (ω) ≥ i log ε

⇔ logP (ω)
log ε

≤ i .

Therefore for the minimal i satisfying ai 
= 0 and so for the rank assigned to ω it follows

κ̃P
ε (ω) =

⌈
logP (ω)

log ε

⌉
(4)

In general, the function κ̃P
ε defined using equation (4) does not satisfy (κ̃P

ε )−1(0) 
=
∅. Therefore, we normalize κ̃P

ε by shifting all ranking values appropriately, i. e., by
defining κP

ε (ω) := κ̃P
ε (ω) − c with c = min{κ̃P

ε (ω) | ω ∈ Ω}. Then κP
ε defines

an ordinal conditional function according to Definition 1. As κP
ε is the only ordinal

conditional function we are dealing with, we will write just κ for κP
ε , when P and ε are

clear from context.

Example 2. (Continuing Example 1)
With ε being 0.3, the probability P (ω1) = 0.171 is written as a polynomial Pε(ω1) =
0 · 0.30 + 0 · 0.31 + 1 · 0.32 + 3 · 0.33 in ε and therefore κ(ω1) = 2. The probabilities
P (ω2) = 0.39 and P (ω3) = 0.48 are written as Pε(ω2) = 0 · 0.30 + 1 · 0.31 + 1 · 0.32

and Pε(ω3) = 0 · 0.30 + 1 · 0.31 + 2 · 0.32, respectively, and so they are both projected
to the same ranking value κ(ω2) = κ(ω3) = 1.
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A process of transforming a given probability distribution into a qualitative represen-
tation (according to equation (4)) is crucially influenced by the chosen base value ε.
It depends on ε how similar some probabilities must be to be projected to the same
ranking value. Thus, ε is the parameter that controls the qualitative smoothing of the
probabilities. For this reason, an appropriate choice for ε is important for the qualita-
tive modeling since it determines the variation in the resulting ranking values and this
way it heavily influences all following calculations based on this values. If the value for
ε is close to 1, then even quite similar probabilities will still be projected to different
ranking values.

However, a too small value of ε will have the effect that even quite different proba-
bilities will be assigned an identical ranking value. Thus, an unacceptable large amount
of information contained in the probabilities will be lost, i. e., the probabilities are
smoothed so much that the resulting ranking values do not carry enough information
to be useful as a qualitative abstraction.

The following example will illustrate to what degree the choice of ε influences the
resulting ranking values.

Example 3. Suppose in our universe are animals (A), fish (B), aquatic beings (C),
objects with gills (D) and objects with scales (E). Table 1 may reflect our observations.
Table 2 shows the ranking values that result from different choices of ε.

Table 1. Empirical probabilities for Example 3

ω object frequency probability

ω1 abcde 59 0.5463
ω2 abcde 21 0.1944

ω3 abcde 11 0.1019

ω4 abcde 9 0.0833

ω5 abcde 6 0.0556

ω6 abcde 2 0.0185

Choosing ε = 0.1 assigns identical ranking values to ω1, ω2 and ω3 and to ω4, ω5

and ω6, respectively. Mapping the latter ones to the same rank could be acceptable,
but mapping the former ones to a common rank is inappropriate, since the probabil-
ities of these worlds cover a (comparative) large range between 0.5463 and 0.1019.
Hence, this choice for ε smoothes the probabilities too much, leading to a qualitative
abstraction that is so coarse that almost all information of the observed distribution is
lost. Choosing ε = 0.9 leads to different ranking value for all ω, although some of the
probabilities are quite similar and therefore should not be distinguished in a qualitative
setting. Hence, this choice for ε does not seem very appropriate as well because it does
not smooth the probabilities effectively. Choosing ε = 0.6 results in a common ranking
value for the (comparative) similar probabilities of ω3 and ω4. This choice for ε seems
to be appropriate to obtain ranking values that form a qualitative representation of the
observed probabilities.
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Table 2. Ranking values resulting from different choices of ε

ranking value
ω ε =0.1 ε =0.6 ε =0.9

ω1 1 2 6
ω2 1 4 16
ω3 1 5 22
ω4 2 5 24
ω5 2 6 28
ω6 2 8 38

In this very small example, the worlds ω offer quite high probabilities. For this reason,
the appropriate value for ε is quite big, too. In a more realistic setting with considerably
smaller probabilities, a much smaller value for ε would be chosen.

The parameter ε defines a measure of similarity that is to make probabilities indis-
tinguishable. In principle, it is up to the user to set ε, depending on his point of view,
but clustering techniques applied to the logarithmic probabilities may help to find an
appropriate ε. A useful heuristic may be to fix a logarithmic similarity α, i.e. probabil-
ities should not be distinguished if their logarithmic distance does not exceed α. Then
clusters of logarithmic probabilities with maximal width α are built. A dendrogram
computed by, e. g., a complete link clustering procedure (cf. [12]) may provide helpful
information for this. Moreover, α should be chosen in such a way that no multiple kα
of α falls within one of the clusters. Finally, ε = e−α may serve to extract ranking
infomation from the empirical probabilities. We will illustrate this in our Example 3.

Example 4. Table 3 shows the logarithmic probabilities loge P (ω) of our example. If

Table 3. Logarithmic probabilities

ω object frequency probability log. probability

ω1 abcde 59 0.5463 −0.60
ω2 abcde 21 0.1944 −1.64

ω3 abcde 11 0.1019 −2.28

ω4 abcde 9 0.0833 −2.49

ω5 abcde 6 0.0556 −2.89

ω6 abcde 2 0.0185 −3.99

we use a logarithmic similarity α = 0.5, then only P (ω3) and P (ω4) are close enough
to be identified, and all multiples of 0.5 discriminate the clusters clearly. Hence ε =
e−0.5 ≈ 0.6 yields an adequate ranking function.

In the next section, we develop an algebraic theory of conditionals, that is used to ob-
tain structural information from such ordinal conditional functions like the one derived
above.
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4 Conditional Structures and c-Representations

In order to obtain structural information from data, one usually searches for causal
relationships by investigating conditional independencies and thus non-interactivity be-
tween sets of variables [13,14,15,16]. Some of these algorithms also make use of opti-
mization criteria which are based on entropy [17,18]. Although causality is undoubtedly
most important for human understanding, it seems to be too rigid a concept to repre-
sent human knowledge in an exhaustive way. For instance, a person suffering from a
flu is certainly sick (P (sick |flu) = 1), and they often will complain about headache
(P (headcache |flu) = 0.9). Then we have

P (headcache |flu) = P (headcache |flu ∧ sick),

but we would surely expect

P (headcache |¬flu) 
= P (headcache |¬flu ∧ sick)!

Although, from a naı̈ve point of view, the (first) equality suggests a conditional indepen-
dence between sick and headcache, due to the causal dependency between headcache
and flu, the (second) inequality shows this to be (of course) false. Furthermore, a physi-
cian might also wish to state some conditional probability involving sick and headache,
so that we would obtain a complex network of rules. Each of these rules will be consid-
ered relevant by the expert, but none will be found when searching for conditional inde-
pendencies! So, what actually are the “structures of knowledge” by which conditional
dependencies (not independencies!) manifest themselves in data? What are the “foot-
prints” conditionals leave on probabilities after they have been learned inductively?

A well-known approach to answer this question is system Z [1] that builds up a com-
pletely specified ranking function from a set of conditionals {(B1|A1), . . . , (Bn|An)}
and yields an inductive reasoning method that satisfies basic properties of default rea-
soning. In this paper, however, we use c-representations for qualitative inductive rea-
soning that have been developed in [4,11]; all proofs and lots of examples can be found
in [11]. This approach follows the same structural lines as ME-reasoning and provides
the techniques for model-based inductive reasoning in a qualitative environment the
quality of which outperforms system Z clearly [19,20].

We first take a structural look on conditionals, bare of numerical values, that is, we
focus on sets R = {(B1|A1), . . . , (Bn|An)} of unquantified conditionals.

In order to model its non-classical uncertainty, we represent a conditional (B|A) as
a three-valued indicator function on worlds

(B|A)(ω) =

⎧⎨
⎩

1 : ω |= AB

0 : ω |= AB
u : ω |= A

where u stands for unknown, following an idea of de Finetti (cf., e. g., [21,22]). Two
conditionals are equivalent iff they yield the same indicator function, so that (B|A) ≡
(D|C) iff AB ≡ CD and AB ≡ CD.
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We generalize this approach by associating to each conditional (Bi|Ai) in R two
abstract symbols a+

i ,a
−
i , symbolizing a (possibly) positive effect on verifying worlds

and a (possibly) negative effect on falsifying worlds:

σi(ω) =

⎧⎨
⎩

a+
i if ω |= AiBi

a−
i if ω |= AiBi

1 if ω |= Ai

(5)

with 1 being the neutral element of the (free abelian) group FR = 〈a+
1 , a

−
1 , . . . ,

a+
n ,a

−
n 〉, generated by all symbols a+

1 ,a
−
1 , . . . ,a

+
n ,a

−
n . The function σR : Ω → FR,

defined by

σR(ω) =
∏

1≤i≤n

σi(ω) =
∏

1≤i≤n
ω|=AiBi

a+
i

∏
1≤i≤n

ω|=AiBi

a−
i (6)

describes the all-over effect of R on ω. σR(ω) is called the conditional structure of ω
with respect toR.

Example 5. Let R = {(c|a), (c|b)}, where A,B,C are bivalued propositional vari-
ables with outcomes {a, a}, {b, b} and {c, c}, respectively, and let FR = 〈a+

1 ,a
−
1 ,

a+
2 ,a

−
2 〉. We associate a+

1 ,a
−
1 with the first conditional, (c|a), and a+

2 , a
−
2 with the sec-

ond one, (c|b). Since ω = abc verifies both conditionals, we obtain σR(abc) = a+
1 a+

2 .
In the same way, e.g., σR(abc) = a−

1 a−
2 , σR(abc) = a+

1 and σR(abc) = a−
2 .

Let Ω̂ := 〈ω̂ | ω ∈ Ω〉 be the free abelian group generated by all ω ∈ Ω, and consisting
of all products ω̂ = ω1

r1 . . . ωm
rm with ω1, . . . , ωm ∈ Ω and integers r1, . . . rm. Note

that, although we speak of multiplication, the worlds in such a product are merely jux-
taposed, forming a word rather than a product. With this understanding, a generalized
world ω̂ ∈ Ω̂ in which only positive exponents occur simply corresponds to a multi-set
of worlds. We will often use fractional representations for the elements of Ω̂, that is,

for instance, we will write
ω1

ω2
instead of ω1ω

−1
2 . Now σR may be extended to Ω̂ in a

straightforward manner by setting

σR(ω1
r1 . . . ωm

rm) = σR(ω1)r1 . . . σR(ωm)rm

yielding a homomorphism of groups σR : Ω̂ → FR.
Having the same conditional structure defines an equivalence relation ≡R on Ω̂:

ω̂1 ≡R ω̂2 iff σR(ω̂1) = σR(ω̂2), i. e. iff ω̂1ω̂
−1
2 ∈ ker σR := {ω̂ ∈ Ω̂ | σR(ω̂) = 1}.

Thus the kernel of σR plays an important part in identifying the conditional structure
of elements ω̂ ∈ Ω̂. ker σR contains exactly all group elements ω̂ ∈ Ω̂ with a balanced
conditional structure, that means, where all effects of conditionals in R on worlds oc-
curring in ω̂ are completely cancelled. Since FR is free abelian, no nontrivial relations
hold between the different group generators a+

1 , a
−
1 , . . . ,a

+
n , a

−
n of FR, so we have

σR(ω̂) = 1 iff σi(ω̂) = 1 for all i, 1 ≤ i ≤ n, and this means

ker σR =
n⋂

i=1

ker σi.
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In this way, each conditional in R contributes to ker σR.
Besides the explicit representation of knowledge byR, also the implicit normalizing

constraint κ(�|�) = 0 for ordinal conditional functions has to be taken into account. It
is easy to check that ker σ(
|
) = Ω̂0, with

Ω̂0 := {ω̂ = ω1
r1 · . . . · ωm

rm ∈ Ω̂ |
m∑

j=1

rj = 0}.

Two elements ω̂1 = ωr1
1 . . . ωrm

m , ω̂2 = νs1
1 . . . ν

sp
p ∈ Ω̂ are equivalent modulo Ω̂0,

ω̂1 ≡
 ω̂2, iff ω̂1Ω̂0 = ω̂2Ω̂0, i.e. iff
∑

1≤j≤m rj =
∑

1≤k≤p sk. This means that ω̂1

and ω̂2 are equivalent modulo Ω̂0 iff they both are a (cancelled) product of the same
number of generators, each generator being counted with its corresponding exponent.
Set

ker0 σR := ker σR ∩ Ω̂0 = ker σR∪{(
|
)}.

In the following, if not stated otherwise, we will assume that all ordinal conditional
functions are finite, i. e., it is κ(A) 
= ∞ for every A. For the methods to be described,
this is but a technical prerequisite, permitting a more concise presentation of the basic
ideas. The general case may be dealt with in a similar manner (cf. [11]). Moreover, in
section 5 we will see that we can get rid of all infinite ranking values (which correspond
to zero probabilities in the empirical distribution) right from the beginning.

Finite ranking functions κ may be extended easily to homomorphisms κ : Ω̂ →
(Z,+) from Ω̂ into the additive group of integers in a straightforward way by setting

κ(ω1
r1 . . . ωm

rm) = r1κ(ω1) + . . .+ rmκ(ωm).

Definition 4 (Conditional indifference). Suppose κ is a (finite) ordinal conditional
function, and let R = {(B1|A1), . . . , (Bn|An)} be a set of conditionals. κ is (condi-
tionally) indifferent with respect to R iff κ(ω̂1) = κ(ω̂2), whenever both ω̂1 ≡R ω̂2

and ω̂1 ≡
 ω̂2 hold for ω̂1, ω̂2 ∈ Ω̂.

If κ is indifferent with respect to R, then it does not distinguish between elements
ω̂1 ≡
 ω̂2 with the same conditional structure with respect to R. Conversely, any
deviation κ(ω̂) 
= 0 can be explained by the conditionals in R acting on ω̂ in a non-
balanced way. Note that the notion of indifference only aims at observing conditional
structures, without making use of any degrees of belief that are associated with the
conditionals.

The following proposition shows, that conditional indifference establishes a connec-
tion between the kernels ker0 σR and

ker0 κ := {ω̂ ∈ Ω̂0 | κ(ω̂) = 0}

which will be crucial to elaborate conditional structures:

Proposition 1. An ordinal conditional function κ is indifferent with respect to a set
R ⊆ (L|L) of conditionals iff ker0 σR ⊆ ker0 κ.

If ker0 σR = ker0 κ, then κ(ω̂1) = κ(ω̂2) iff σR(ω̂1) = σR(ω̂2), for ω̂1 ≡
 ω̂2. In
this case, κ completely follows the conditional structures imposed by R – it observes
R faithfully.
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The next theorem characterizes indifferent ordinal conditional functions:

Theorem 1. An ordinal conditional function κ is indifferent with respect to a set R =
{(B1|A1), . . . , (Bn|An)} ⊆ (L|L) iff κ(Ai) 
= ∞ for all i, 1 ≤ i ≤ n and there are
rational numbers κ0, κ

+
1 , κ

−
1 , . . . , κ

+
n , κ

−
n ∈ Q, such that

κ(ω) = κ0 +
∑

1 ≤ i ≤ n
ω |= AiBi

κ+
i +

∑
1 ≤ i ≤ n

ω |= AiBi

κ−i , (7)

for all ω ∈ Ω.

There are striking similarities between (1), (6), and (7). The equations (1) and (7) are
both implementations of (6): while in (1) multiplication is used for combining the
operands, in (7) it is addition. Furthermore, in (1), the abstract symbols a+

i ,a
−
i of

(6) have been replaced by the numerical values α1−xi

i and α−xi

i , respectively (α0 is
simply a normalizing factor). In (7), additive constants κ+

i , κ
−
i realize the structural ef-

fects of conditionals. Both the αi’s and the κi’s bear crucial conditional information,
leaving “footprints” on probabilities resp. ranking values when inductively represent-
ing conditionals (also cf. [10]). In [11] it is shown that ordinal conditional functions
and probability distributions can be subsumed by the general concept of conditional
valuation functions.

Example 6. We continue Example 5. Here we observe

σR

(
abc · abc
abc · abc

)
=
σR(abc) · σR(abc)
σR(abc) · σR(abc)

=
a+

1 a+
2 · 1

a+
1 · a+

2

= 1,

that is,
abc · abc
abc · abc

∈ ker0 σR. Then any ordinal conditional function κ that is indifferent

with respectRwill fulfill κ

(
abc · abc
abc · abc

)
= 0, i. e., κ(abc)+κ(abc) = κ(abc)+κ(abc).

In [23], we investigate the exact relationship between conditional indifference and con-
ditional independence and show that conditional indifference is the strictly more general
concept.

Now, in order to obtain a proper representation of a set of conditionals R, we can
use the schema (7) and impose the constraints induced by the conditionals inR.

Definition 5 (C-representation 1). An ordinal conditional function κ is a c-represen-
tation of a set R = {(B1|A1), . . . , (Bn|An)} of conditionals iff κ is indifferent with
respect to R and accepts all conditionals inR, i. e. κ |= R.

For the constraints κ |= (Bi|Ai), 1 ≤ i ≤ n, to hold, the additive constants κ+
i , κ

−
i

have to satisfy certain relationships which can be checked easily.
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Proposition 2. An ordinal conditional function κ is a c-representation of a set R =
{(B1|A1), . . . , (Bn|An)} of conditionals, iff κ has the form (7) and the κ+

i , κ
−
i , 1 ≤

i ≤ n, fulfill the following inequality:

κ−i − κ+
i > min

ω|=AiBi

(
∑
j �=i

ω|=AjBj

κ+
j +

∑
j �=i

ω|=AjBj

κ−j ) (8)

− min
ω|=AiBi

(
∑
j �=i

ω|=AjBj

κ+
j +

∑
j �=i

ω|=AjBj

κ−j )

This approach can be generalized in a straightforward manner to handle quantified
OCF-conditionals. If ROCF = {(B1|A1)[m1], . . . , (Bn|An)[mn]} is a set of quan-
tified OCF-conditionals, then we denote by R = {(B1|A1), . . . , (Bn|An)} its corre-
sponding set of purely qualitative conditinals.

Definition 6 (C-representation 2). An ordinal conditional function κ is a c-represen-
tation of a set ROCF = {(B1|A1)[m1], . . . , (Bn|An)[mn]} of quantified OCF-con-
ditionals iff κ is indifferent with respect toR and accepts all conditionals inROCF, i. e.
κ |= ROCF.

According to (2), the constraints imposed by κ |= (Bi|Ai)[mi] can be handled in a way
similar to the purely qualitative case.

Proposition 3. An ordinal conditional function κ is a c-representation of a setROCF =
{(B1|A1)[m1], . . . , (Bn|An)[mn]} of quantified OCF-conditionals, iff κ has the form
(7) and the κ+

i , κ
−
i , 1 ≤ i ≤ n, fulfill the following inequality:

κ−i − κ+
i = mi + min

ω|=AiBi

(
∑
j �=i

ω|=AjBj

κ+
j +

∑
j �=i

ω|=AjBj

κ−j ) (9)

− min
ω|=AiBi

(
∑
j �=i

ω|=AjBj

κ+
j +

∑
j �=i

ω|=AjBj

κ−j )

For the sake of informational economy, the difference κ−i −κ+
i reflecting the amount of

distortion imposed by a conditional belief should be minimal. A reasonable approach
to obtain “small” c-representations κ is to set κ+

i = 0 and to choose κ−i minimal, in
accordance with (8) resp. (9). This simplifies the reasoning with c-representations a lot.
The schema (7) shrinks to

κ(ω) =
∑

1 ≤ i ≤ n

ω |= AiBi

κ−i , ω ∈ Ω, (10)

as for consistent sets of conditionals the normalizing constant κ0 is always zero, and
the inequalities (8) now read

κ−i > min
ω|=AiBi

(
∑
j �=i

ω|=AjBj

κ−j )− min
ω|=AiBi

(
∑
j �=i

ω|=AjBj

κ−j ) (11)
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However, different from the ME-principle in the probabilistic case, even minimal c-
representations are not uniquely determined. It is still an open problem of research to
specify conditions for unique c-representations. For the knowledge discovery problem
dealt with in this paper, this is not a severe problem, as the ranking function is not
searched for, but is derived from the given empirical distribution.

In summary, any ordinal conditional function κ that is indifferent with respect to a
set of conditionalsROCF follows the conditional structures that are imposed by the con-
ditionals inR onto the worlds and is thus most adequate to represent ordinal conditional
knowledge.

In the following, we will put these ideas in formal, algebraic terms and prepare the
theoretical grounds for the data mining techniques to be presented in this paper.

5 Discovering Structural Information

In this section, we will describe our approach to knowledge discovery which is based
on the algebraic theory of conditionals sketched above. More precisely, we will show
how to compute sets R, or ROCF, respectively, of (quantified) default rules that are
apt to generate some given (finite) ordinal conditional function κP that is indifferent
with respect to R, respectively ROCF. κP has been chosen to represent the observed
statistical data P , as has been described in Section 3. More details and all proofs can be
found in [11]; a generalization to multivalued variables (instead of bivalued variables)
is straightforward.

In our scenario, an empirically obtained probability distribution P is given that may
simply consist of relative frequencies. Usually, the aim of a data mining task is to com-
pute a set of probabilistic rules Rprob = {(B1|A1)[x1], . . . , (Bn|An)[xn]}, such that
this set predicts P best. This task was handled in [5] and also uses the algebraic theory
of conditionals sketched above. The problem with the approach of [5] is that usually
the empirically obtained probability distribution P is noisy and one can not find an ap-
propriate (and particularly compact) set of probabilistic rules Rprob that explains the
observed P . The set of computed probabilistic rules tends to be large and the rules are
getting too specific to be helpful in a general context. On this account we present an al-
ternative approach to knowledge discovery that also makes use of the algebraic theory
of conditionals of [11] but is based on a representation of P by qualitative probabilities,
i. e. by rankings.

As a first step, the probability distribution P is qualified in a sense, that we compute
its ranking representation κP regarding equation (4). By doing this, we fuse several
similar probabilities, that should not be distinguished in a qualitative setting, to one
rank value of the obtained ranking function. Therefore we minimize the noise, that
could be present in the original distribution P , obtaining a qualitative representation.
We can now use the formalism of the algebraic theory of conditionals to compute a set
ROCF = {(B1|A1)[m1], . . . , (Bn|An)[mn]} of OCF-conditionals, that best explains
κP , i. e., that is (in the best case) a faithful representation of κP . More precisely, we
are looking for a set R of (unquantified) conditionals, such that κP is indifferent with
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respect toR, i. e., ker0 σR ⊆ ker0 κP by Proposition 1. Ideally, we would have κP to
representR faithfully, that is,

κP |= R and ker0 κ
P = ker0 σR (12)

This means κP is indifferent with respect to R, and no equation κP (ω̂) = 0 is fulfilled
accidentally, but any of these equations is induced byR.

Finally, we can assign rankings to these conditionals, derived immediately from κP

thus obtaining a setROCF of OCF-conditionals.
Under the assumption of faithfulness, the structures of the conditionals inR become

manifest in the elements of ker0 κP , that is, in elements ω̂ ∈ Ω̂ with κP (ω̂) = 0. As a
further prerequisite, we will assume that this knowledge inherent to κP is representable
by a set of single-elementary conditionals. This restriction is not too hard, because
single-elementary conditionals are expressive enough to represent most commonsense
knowledge. As our approach will work for any given ranking function κ, we omit the
superscript P in this section.

So assume ROCF = {(b1|A1)[m1], . . . , (bn|An)[mn]} is an existing, but hidden
set of single-elementary conditionals, such that (12) holds. Let us further suppose that
ker0 κ (or parts of it) is known from exploiting numerical relationships. Since condi-
tional indifference is a structural notion, the quantificationsmi of the conditionals will
not be needed in what follows. Let σR : Ω̂ → FR = 〈a+

1 ,a
−
1 , . . . ,a

+
n ,a

−
n 〉 denote a

conditional structure homomorphism with respect to R .
Besides conditional structures, a further notion which is crucial to study and exploit

conditional interactions is that of subconditionals: (D|C) is called a subconditional
of (B|A), and (B|A) is a superconditional of (D|C), written as (D|C) � (B|A),
iff CD |= AB and CD |= AB, that is, iff all worlds verifying (falsifying) (D|C)
also verify (falsify) (B|A). For any two conditionals (B|A), (D|C) ∈ (L|L) with
ABCD ≡ ABCD ≡ ⊥, the supremum (B|A) � (D|C) in (L|L) with respect to
� exists and is given by

(B|A) � (D|C) ≡ (AB ∨ CD|A ∨ C)

(cf. [11]). In particular, for two conditionals (B|A), (B|C) with the same consequent,
we have

(B|A) � (B|C) ≡ (B|A ∨ C)

The following lemma provides an easy characterization for the relation � to hold be-
tween single-elementary conditionals:

Lemma 1. Let (b|A) and (d|C) be two single-elementary conditionals. Then (d|C) �
(b|A) iff C |= A and b = d.

This lemma may be generalized slightly to hold for conditionals (b|A) and (d|C) where
A andC are disjunctions of conjunctions of literals not containing b and d, respectively.

From (5), Definition 4 and Proposition 1, it is clear that in an inductive reasoning
process such as a propagation that results in an indifferent representation of conditional
knowledge R, all subconditionals of conditionals in R also exert the same effects on
possible worlds as the corresponding superconditionals. The basic idea is to start with
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most basic conditionals, and to generalize them step-by-step to superconditionals in
accordance with the conditional structure revealed by ker0 κ. From a theoretical point
of view, the most adequate candidates for rules to start with are basic single-elementary
conditionals, which are single-elementary conditionals with antecedents of maximal
length:

ψv,l = (v | Cv,l) (13)

where v is a value of some variable V ∈ V and Cv,l is an elementary conjunction
consisting of literals involving all variables from V except V . It is clear that considering
all such conditionals is intractable, but we are still on theoretical grounds, so let us
assume for the moment we could start with the set

B = {ψv,l | v ∈ V , l suitable}

of all basic single-elementary conditionals in (L|L), and let FB = 〈b+
v,l,b

−
v,l〉v,l be

the free abelian group corresponding to B with conditional structure homomorphism
σB : Ω̂ → FB. Note that σB and FB are known, whereas σR and FR are not. We only
know the kernel, ker0 σR, of σR, which is, by assuming faithfulness (12), the same as
the kernel, ker0 κ, of κ. Now, to establish a connection between what is obvious (B)
and what is searched for (R), we define a homomorphism g : FB → FR via

g(b±
v,l) :=

∏
1≤i≤n

ψv,l�(bi|Ai)

a±
i =

∏
1≤i≤n

bi=v,Cv,l|=Ai

a±
i , (14)

where the second equality holds due to Lemma 1. g uses the subconditional-relationship
in collecting for each basic conditional in B the effects of the corresponding supercondi-
tionals inR. Actually, g is a “phantom” which is not explicitly given, but only assumed
to exist. Its crucial meaning for the knowledge discovery task is revealed by the follow-
ing theorem:

Theorem 2. Let g : FB → FR be as in (14). Then

σR = g ◦ σB

In particular, ω̂ ∈ ker0 σR = ker0 κ iff ω̂ ∈ Ω̂0 and σB(ω̂) ∈ ker g.

This means, that numerical relationships observed in κ (and represented by elements of
ker0 κ) translate into group theoretical equations modulo the kernel of g.

Proposition 4. Let ω̂ = ωr1
1 · . . . · ωrm

m ∈ Ω̂0. Then σB(ωr1
1 · . . . · ωrm

m ) ∈ ker g iff for
all literals v in L,∏

Cv,l

∏
1≤k≤m

ωk|=Cv,lv

(b+
v,l)

rk ,
∏
Cv,l

∏
1≤k≤m

ωk|=Cv,lv

(b−
v,l)

rk ∈ ker g. (15)

So each (generating) element of ker0 σR gives rise to an equation modulo ker g for
the generators b+

v,l,b
−
v,l of FB. Moreover, Proposition 4 allows us to split up equations

modulo ker0 g to handle each literal separately as a consequent of conditionals, and
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to separate positive from negative effects. These separations are possible due to the
property of the involved groups of being free abelian, and they are crucial to disentangle
conditional interactions (cf. also [11]).

Now the aim of our data mining procedure can be made more precise: We are going
to define a finite sequence of sets S(0),S(1), . . . of conditionals approximating R, in
the sense that

ker0 σS(0) ⊆ ker0 σS(1) ⊆ . . . ⊆ ker0 σR = ker0 κ (16)

The set B of basic single elementary conditionals proves to be an ideal starting point
S(0):

Lemma 2. σB is injective, i.e. ker0 σB = {1}.

So σB provides the most finely grained conditional structure on Ω̂: No different ele-
ments ω̂1 
= ω̂2 are equivalent with respect to B.

Step by step, the relations mod ker g holding between the group elements are ex-
ploited with the aim to construct S(t+1) from S(t) by eliminating or joining condi-
tionals by �, in accordance with the equations modulo ker g (i. e., by assumption,
with the numerical relationships found in κ). Each S(t) is assumed to be a set of
conditionals φ(t)

v,j with a single literal v in the conclusion, and the antecedent D(t)
v,j

of φ(t)
v,j is a disjunction of elementary conjunctions not mentioning the variable V .

Let FS(t) = 〈s(t)
v,j

+
, s(t)

v,j

−
〉v,j be the free abelian group associated with S(t), and

σS(t) : Ω̂ → FS(t) the corresponding structure homomorphism; let g(t) : FS(t) → FR
be the homomorphism defined by

g(t)(s(t)
v,j

±
) =

∏
1≤i≤n

v=bi,D
(t)
v,j

|=Ai

a±
i

such that g(t) ◦ σS(t) = σR. Let ≡g(t) denote the equivalence relation modulo ker g(t),
i. e., s1 ≡g(t) s2 iff g(t)(s1) = g(t)(s2) for any two group elements s1, s2 ∈ FS(t) . In the
following, for ease of notation, we will omit the +,− superscripts on group generators;
this is justified, since, by Proposition 4, only one {+,−}-type of generators is assumed
to occur in the equations to be dealt with in the sequel. It is clear that all equations can
be transformed such that on either side, only generators with positive exponents occur.

The basic type of equation that arises from ker0 κ by applying Theorem 2 and the
faithfulness assumption (12) is of the form

s(t)
v,j0

≡g(t) s(t)
v,j1

. . . s(t)
v,jm

(17)

To obtain the new set S(t+1) by solving this equation, the following steps have to be
done:

1. eliminate φ(t)
v,j0

from S(t);

2. replace each φ(t)
v,jk

by φ(t+1)
v,jk

= φ
(t)
v,j0

� φ(t)
v,jk

for 1 ≤ k ≤ m.
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3. retain all other φ(t)
w,l in S(t).

This also includes the casem = 0, i.e. φ(t)
v,j0

≡g(t) 1; in this case, Step 2 is vacuous and
therefore is left out.

It can be shown (cf. [11]) that

g(t+1) ◦ σS(t+1) = σR

and hence
ker0 σS(t) ⊆ ker0 σS(t+1) ⊆ ker0 σR

as desired. Moreover, ker g(t+1) can be obtained directly from ker g(t) by straightfor-
ward modifications. Since the considered equation has been solved, it can be eliminated,
and other equations may simplify.

Now, that the theoretical background and the basic techniques have been described,
we will turn to develop an algorithm for conditional knowledge discovery.

6 Learning Default Rules from Data

In this section, we will describe an adjusted version of the CKD-algorithm (= Con-
ditional Knowledge Discovery) for the determination of default rules from qualitative
approximations of statistical data. This algorithm is sketched in Figure 2. The origi-
nal CKD-algorithm for mining probabilistic conditionals from statistical data has been
implemented in the CONDOR-system (for an overview, cf. [24]). The resulting set of
default rules or OCF-conditionals will reveal relevant relationships and may serve to
represent inductively the corresponding ordinal conditional function faithfully.

A problem that has already been mentioned but postponed in section 5 is that the
set B of all basic single elementary conditionals is virtually unmanageable. Therefore
it cannot be used as an adequate starting set in the algorithm. Another problem emerges
from the frequency distributions calculated from a data set. In a realistic setting, these
distributions are sparse, i. e., they deliver zero values for many worlds. Hence, the prob-
ability value of these worlds is zero as well and according to Definition 3, a world with a
zero probability is assigned an infinite ranking value. Besides calculational difficulties,
the correct interpretation of such worlds, which have not been observed in the ana-
lyzed data and therefore have a frequency of zero, is not clear: On the one hand, these
worlds might just have not been captured when recorded the data; perhaps because the
amount of recorded data was not large enough and they have merely been missed. In
this case, assigning these worlds a zero probability would be misleading. On the other
hand, these worlds might not exist at all (and could therefore not have been recorded),
so a zero probability would be completely justified; but this could never be assured by
pure observation. The problem of zero probabilities is addressed more deeply in [5].

Both of these problems – the exponential complexity of the ideal conditional starter
set and the sparse and mostly incomplete knowledge provided by statistical data – can
be solved in our framework in the following way: The zero values in an observed fre-
quency distribution are taken to be unknown, but equal probabilities, that is, they are
treated as non-knowledge without structure. More exactly, let P be the frequency dis-
tribution computed from the set of data under consideration. Then, for each two worlds
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Algorithm CKD for OCFs
(Conditional Knowledge Discovery)

Input A probability distribution P obtained from statistical data,
(only explicitly listing those entries with positive probabilities)
together with information on variables and appertaining values
and an abstraction parameter ε ∈ (0, 1)

Output A set of OCF-conditionals (default rules)

Begin
% Qualitative representation
Calculate the ranking value κ̃P

ε (ω) for each input value P (ω);
Normalize κ̃P

ε to obtain the ordinal conditional function κP
ε ;

% CKD Initialization
Compute the basic tree of conjunctions;
Compute the list NC of null-conjunctions;
Compute the set S(0) of basic rules;
Compute ker0 κP

ε ;
Compute ker g;
Set K := ker g;
Set S := S(0);

% CKD Main loop
While equations of type (17) are in K Do

Choose gp ∈ K of type (17);
Modify (and compactify) S ;
Modify (and reduce) K;

% Present results
Calculate the degrees of belief of the conditionals in S ;
Return S and appertaining degrees of belief;

End.

Fig. 2. The CKD-algorithm for OCFs

ω1, ω2 not occurring in the database and thus being assigned an unknown but equal
probability, we have P (ω1) = P (ω2); with κP being the corresponding ordinal con-
ditional function, this leads to κP (ω1) = κP (ω2) and hence ω1

ω2
∈ ker0 κP . In this

way, all these so-called null-worlds contribute to ker0 κP , and their structure may be
theoretically exploited to shrink the starting set of conditionals in advance.

In order to represent missing information in a most concise way, null-conjunctions
(i. e. elementary conjunctions with frequency 0) have to be calculated as disjunctions of
null-worlds. To this end, the basic tree of conjunctions is built up. Its nodes are labelled
by the names of variables, and the outgoing edges are labelled by the corresponding
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values, or literals, respectively. The labels of paths going from the root to nodes define
elementary conjunctions. So, the leaves of the tree either correspond to complete con-
junctions occurring in the database, or to null-conjunctions. These null-conjunctions
are collected and aggregated to define a set NC of most concise conjunctions of ranking
value∞.

Now we are able to set up a set S(0) of basic rules also with the aid of tree-like
structures. First, it is important to observe that, due to Proposition 4, conditionals may
be separately dealt with according to the literal occurring in their consequents. So S(0)

consists of sets S(0,v) of conditionals with consequent v, for each value v of each vari-
able V ∈ V . Basically, the full trees contain all basic single-elementary conditionals
from B, but the trees are pruned with the help of the set NC of null-conjunctions. The
method to shorten the premises of the rules is the same as has been developed in the
previous section with finite ranking values, except that now appropriate modifications
have to be anticipated, in order to be able to work with a set of rules of acceptable size
right from the beginning.

Now, that the missing values in the frequency distribution corresponding to infi-
nite degrees of disbelief have been absorbed by the shortened basic rules, we explore
the finite rankings derived from P to set up ker0 κP . Usually, numerical relationships
κP (ω̂) = 0 induced by single-elementary rules can be found between neighboring
complete conjunctions (i.e. complete conjunctions that differ in exactly one literal). We
construct a neighbor graph from κP , the vertices of which are the non-∞-worlds, la-
belled by their finite ranking values, and with edges connecting any two neighbors.
Then any such relationship κP (ω̂) = 0 corresponds to a cycle of even length (i. e. in-
volving an even number of vertices) in the neighbor graph, such that the alternating sum
built from the values associated with the vertices, with alternating coefficients +1 and
−1 according to the order of vertices in the cycle, amounts to 0. Therefore, the search
for numerical relationships holding in κP amounts to searching for cycles with sum 0
in the neighbor graph.

At this point, an important advantage of using qualitative probabilities, i. e., ranking
values, becomes clear: Because the ranking values are discrete values, we can demand
that the vertices of a cycle must sum up to exactly zero. In the approach of [5] that uses
the empirically obtained probabilities directly, one can only demand that vertices of a
cycle must approximately fulfill the corresponding equation, because equality can usu-
ally not be reached when calculating with the exact probabilities, i. e., with continuous
values. So in the approach of [5] the important step of exploring the numerical relation-
ships depends implicitly on the notion of ”approximately”. But by using an (appropri-
ate) explicit parameter ε for the qualitative abstraction of the original probabilities, the
search for numerical relationships is defined precisely.

Finally, as the last step of the initialization, ker g has to be computed from ker0 κ
P

with respect to the set S(0) of conditionals, as described in the previous section.
In the main loop of the algorithm CKD, the setsK of group elements and S of condi-

tionals are subject to change. In the beginning,K = ker g and S = S(0); in the end, S
will contain the discovered conditional relationships. More detailed, the products in K
which correspond to equations of type (17) are used to simplify the set S. The modified
conditionals induce in turn a modification of K, and this is repeated as long as elements
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yielding equations of type (17) can be found in K. Note that no ranking values are used
in this main loop – only structural information (derived from numerical information) is
processed. It is only afterwards, that the ranking values of the conditionals in the final
set S are computed from κP , and the OCF-conditionals (default rules) are returned.

Although equations of type (17) are the most typical ones, more complicated equa-
tions may arise, which need further treatment. The techniques described above, how-
ever, are basic to solving any group equation. More details will be published in a forth-
coming paper. But in many cases, we will find that all or nearly all equations in ker g
can be solved successfully and hence can be eliminated from K.

We will illustrate our method by the following example.

Example 7. (Continuing Example 3)
From the observed probabilities, we calculate qualitative probabilities, using ε = 0.6 as
base value. We adjust the calculated qualitative probabilities by subtracting the normal-
ization constant c = 2, so that the lowest ranking becomes 0. This gives us the rank-
ing values κP (ω) that define the ordinal conditional function κP , as can be seen from
Table 4.

Table 4. Empirical probabilities and corresponding ranking values

object frequency probability rank

abcde 59 0.5463 0
abcde 21 0.1944 2

abcde 11 0.1019 3

abcde 9 0.0833 3

abcde 6 0.0556 4

abcde 2 0.0185 6

The set of null-conjunctions is calculated as NC = {a, c, b d} – no object matching
any one of these partial descriptions occurs in the data base. These null-conjunctions
are crucial to set up a starting set B of basic rules of feasible size:

B = { φb,1 = (b|acde) φd,1 = (d|abce)
φb,2 = (b|acde) φd,2 = (d|abce)
φb,3 = (b|d) φd,3 = (d|b)
φe,1 = (e|abcd) φa,1 = (a|�)
φe,2 = (e|abcd)
φe,3 = (e|abcd) φc,1 = (c|�) }

So, the missing information reflected by the set NC of null-conjunctions helped to
shrink the starting set B of rules from 5 · 24 = 80 basic single-elementary rules to only
11 conditionals. The next step is to analyze numerical relationships. In this example,
we find two numerical relationships between neighboring worlds that are balanced:

κP (abcde) = κP (abcde) and κP (abcde)− κP (abcde) = κP (abcde)− κP (abcde)
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At this point, it becomes clear how crucial an appropriate choice for ε is. If ε had been
chosen too high, e. g. ε = 0.9 as in Example 3, then the neighboring worlds ω3 and ω4

would have been assigned different ranking values, so the first numerical relationship
would not hold. Thus an important piece of structural information would have been
missed. On the other hand, if ε had been chosen much too small, e. g. ε = 0.01, then
all worlds would have been projected to the same ranking value. Thus relationships be-
tween all neighboring worlds would have been established, leading to no useful results.

Continuing the example, the first relationship can be translated into the following
structural equations by using σB, according to Theorem 2:

b+
a,1b

−
b,1b

+
c,1b

+
d,3b

+
e,3 ≡g b+

a,1b
−
b,2b

+
c,1b

+
d,3b

−
e,3

⇒ b−
b,1 ≡g b−

b,2 and b+
e,3 ≡g b−

e,3 ≡g 1

So φb,1 and φb,2 are joined to yield (b|acd), and φe,3 is eliminated. In a similar way,
by exploiting the second relationship in κP , we obtain b±

d,1 ≡ b±
d,2 and b±

e,1 ≡ b±
e,2,

that is, the corresponding conditionals have to be joined. As a final output, the CKD
algorithm returns the set of conditionals that is shown in Table 5.

Table 5. Conditionals calculated by the CKD algorithm

conditional empirical probability degree of belief

(a|�) 1 ∞
(b|d) 1 ∞

(b|acd) 0.80 3

(e|abc) 0.74 2

(c|�) 1 ∞
(d|b) 1 ∞

(d|abc) 0.91 4

All these conditionals are accepted in κP . For each of them the degree of belief regard-
ing κP can be stated as well as the probability regarding the observed distribution P .
So all objects in our universe are aquatic animals which are fish or have gills. Aquatic
animals with gills are mostly fish (with a degree of belief 3 and a probability of 0.80),
aquatic fish usually have gills (with a degree of belief 4 and a probability of 0.91) and
scales (with a degree of belief 2 and a probability of 0.74).

Furthermore, an approximated probability based on the ranking values can be calculated
for each conditional (B|A). Because the ranking values are determined according to
equation (4), each probability P (ω) is qualitatively approximated by its corresponding
ranking value, so we have:

P (ω) ≈ εκ
P (ω) (18)

By taking into consideration the equation

P (B|A) =
1

P (A)
P (AB)

=
1

P (AB)+P (AB)
P (AB)

=
1

1 + P (AB)
P (AB)

,
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Table 6. Conditionals and their approximated probabilities

conditional degree of belief approx. probability

(a|�) ∞ 1

(b|d) ∞ 1

(b|acd) 3 0.82

(e|abc) 2 0.74

(c|�) ∞ 1

(d|b) ∞ 1

(d|abc) 4 0.89

we can approximate the probability of a conditional by its degree of belief2 m:

P (B|A) ≈ 1

1 + εκP (AB)

εκP (AB)

=
1

1 + εκP (AB)−κP (AB)
=

1
1 + εm

(19)

Example 8. (Continuing Example 7)
The application of formula (19) results in approximated conditional probabilities, listed
in Table 6. Compared to the exactly calculated empirical probabilities (cf. Table 5),
the deviation of the approximated conditional probabilities is comparatively small. Al-
though the statistical probability values P (ω) have been abstracted by qualitative values
and the approximation in equation (18) might appear somewhat coarse, the results are
nevertheless quite accurate. This illustrates that the qualitative abstraction of the orig-
inal probabilities conserves enough information to be useful in handling questions of
structural relationship.

We have proposed an approach to qualitative knowledge discovery that followed the
mechanisms of reverse inductive knowledge representation developed in [5] but is based
on a qualitative representation of the empirically obtained probability distributionP that
serves as input to the data mining process. An ordinal conditional function κP based on
qualitative probabilities [1] was used to capture the qualitative information inherent to
P . With the use of an algebraic theory of conditionals, the approach generates default
rules that are apt to compactly represent the information of κP . We briefly described
the theoretical and methodological background, and also made clear how our method
can be implemented by sketching an algorithm.

A problem of open research is the question, of how to determine the abstraction pa-
rameter that is needed to represent the probabilities as polynomials in that parameter
in an optimal way. As mentioned before, this determination is crucial when computing
the qualitative abstractions of the information inherent in the original distribution be-
cause the precision of the computed qualitative representation depends particularly on
the chosen parameter.

The purely probabilistic version of the described algorithm has been developed and
implemented during the CONDOR-project3. CONDOR is an integrated system for learn-

2 At this point, is does not matter whether the ranking values originating directly from equation
(4) or the normalized ones are used, because the normalization constant will be cancelled out
when considering conditionals.

3 Supported by the German Research Society, DFG, under grant BE 1700/5-1.
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ing, reasoning and belief revision in a probabilistic environment. For future work, we
are planning to implement the algorithm for qualitative knowledge discovery presented
in this paper and integrate it into CONDOR to also provide qualitative learning and
reasoning facilities. The common methodological grounds based on c-representations
which can be used both for probabilistic and default reasoning will establish clear links
between quantitative and qualitative frameworks, as was illustrated in the running ex-
ample of this paper.

7 Summary and Further Work

We have proposed an approach to qualitative knowledge discovery that followed the
mechanisms of reverse inductive knowledge representation developed in [5] but is based
on a qualitative representation of the empirically obtained probability distributionP that
serves as input to the data mining process. An ordinal conditional function κP based on
qualitative probabilities [1] was used to capture the qualitative information inherent to
P . With the use of an algebraic theory of conditionals, the approach generates default
rules that are apt to compactly represent the information of κP . We briefly described
the theoretical and methodological background, and also made clear how our method
can be implemented by sketching an algorithm.

A problem of open research is the question, of how to determine the abstraction pa-
rameter that is needed to represent the probabilities as polynomials in that parameter
in an optimal way. As mentioned before, this determination is crucial when computing
the qualitative abstractions of the information inherent in the original distribution be-
cause the precision of the computed qualitative representation depends particularly on
the chosen parameter.

The purely probabilistic version of the described algorithm has been developed and
implemented during the CONDOR-project4. CONDOR is an integrated system for learn-
ing, reasoning and belief revision in a probabilistic environment. For future work, we
are planning to implement the algorithm for qualitative knowledge discovery presented
in this paper and integrate it into CONDOR to also provide qualitative learning and
reasoning facilities. The common methodological grounds based on c-representations
which can be used both for probabilistic and default reasoning will establish clear links
between quantitative and qualitative frameworks, as was illustrated in the running ex-
ample of this paper.
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17. Herskovits, E., Cooper, G.: Kutató: An entropy-driven system for construction of proba-
bilistic expert systems from databases. Technical Report KSL-90-22, Knowledge Systems
Laboratory (1990)

18. Geiger, D.: An entropy-based learning algorithm of bayesian conditional trees. In: Proceed-
ings of the Eighth Conference on Uncertainty in Artificial Intelligence, pp. 92–97 (1992)

19. Kern-Isberner, G.: Following conditional structures of knowledge. In: Burgard, W.,
Christaller, T., Cremers, A.B. (eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 125–136.
Springer, Heidelberg (1999)

20. Kern-Isberner, G.: Handling conditionals adequately in uncertain reasoning. In: Benferhat,
S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 604–615. Springer,
Heidelberg (2001)

21. DeFinetti, B.: Theory of Probability, vol. 1,2. John Wiley and Sons, New York (1974)
22. Calabrese, P.: Deduction and inference using conditional logic and probability. In: Goodman,

I., Gupta, M., Nguyen, H., Rogers, G. (eds.) Conditional Logic in Expert Systems, pp. 71–
100. Elsevier, North Holland (1991)

23. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preservation in
belief revision. Annals of Mathematics and Artificial Intelligence 40(1-2), 127–164 (2004)

24. Beierle, C., Kern-Isberner, G.: Modelling conditional knowledge discovery and belief revi-
sion by abstract state machines. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM
2003. LNCS, vol. 2589, pp. 186–203. Springer, Heidelberg (2003)



On the Notion of an XML Key

Sven Hartmann1,
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Abstract. Ongoing efforts in academia and industry to advance the
management of XML data have created an increasing interest in research
on integrity constraints for XML. In particular keys have recently gained
much attention. Keys help to discover and capture relevant semantics of
XML data, and are crucial for developing better methods and tools for
storing, querying and manipulating XML data. Various notions of keys
have been proposed and investigated over the past few years. Due to
the different ways of picking and comparing data items involved, these
proposals give rise to constraint classes that differ in their expressive
power and tractability of the associated decision problems. This paper
provides an overview of XML key proposals that enjoy popularity in the
research literature.

1 Introduction

XML, the eXtensible Markup Language [7] has become the standard for shar-
ing and integrating data on the Web and elsewhere. There is wide consensus
among researchers and practitioners that XML requires commensurate support
by DBMS and data management tools, in particular to store, query and process
XML data in its native format. The inherent syntactic flexibility and hierarchical
structure of XML make it a challenge to precisely describe desirable properties
of XML data and provide methods and facilities that can efficiently conclude,
validate, or enforce such properties, cf. [15,16,17,26,28].

Integrity constraints restrict data stores such as XML documents or XML
databases to those considered meaningful for some application of interest. Spec-
ifying and enforcing integrity constraints helps to ensure that the data stored
stays valid and does not deviate from reality. Integrity constraints enjoy a va-
riety of applications ranging from schema design, query optimisation, efficient
access and updating, privacy and integrity, data exchange and integration, to
data cleaning, cf. [15].

Keys are without any doubt one of the most fundamental classes of integrity
constraints. The importance of keys for XML has been recognized by industry
� Corresponding author.

K.-D. Schewe and B. Thalheim (Eds.): SDKB 2008, LNCS 4925, pp. 103–112, 2008.
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and academia. They provide the means for identifying data items in an unam-
biguous way, an ability that is essential for retrieving and updating data. For
relational data, keys are straightforward to define, convenient to use and simple
to reason about. For XML data, however the story is more cumbersome due
to the particularities of the XML data model. Over the past few years several
notions have been proposed and discussed in the research community, including
the definitions that have been introduced into XML Schema [27]. While this has
established an industry standard for specifying keys, Arenas et al. [2] have shown
the computational intractability of the associated consistency problem, that is,
the question whether there exists an XML document that conforms to a given
DTD or XSD and satisfies the specified keys.

The most popular alternative proposal is due to Buneman et al [10,11] who
define keys independently from any schema such as a DTD or XSD. Rather they
based keys on the representation of XML data as trees. Keys uniquely identify
nodes of interest in such a tree by some selected nodes, their associated complex
values or their location.

E

A

E

S

title

E author

E

S

E

S

E author

E

S

E

S

E

A E

S

E author

E

S

E

S

E
db

@doi

first last first last

Marcelo Arenas Leonid Libkin

publ

@doi
title

first last

publ

for XML documents
A normal form

Leonid Libkin

Data exchange and
incomplete information

"1142351.1142360""974750.974757"

Fig. 1. An XML data tree

In Figure 1, an example of a reasonable key is that the doi-value identifies the
publ node. That is, the doi subnodes of different publ nodes must have different
values. In contrast, an author cannot be identified in the entire tree by its first and
last subnodes since the same author can have more than one publication. However,
the author can indeed be identified by its first and last subnodes relatively to the
publ node. That is, for each individual publ node, different author subnodes must
differ on their first or last subnode value.

Clearly, the expressiveness of such keys depends on the means that are used for
selecting nodes in a tree, and by the semantics of the associated node selection
queries. The key notion proposed Buneman et al. is flexible in the choice of
an appropriate query language. Unfortunately, increased expressive power often
comes at the price of increased complexity of the associated decision problems.
It is still a major challenge to find natural and useful classes of keys that can be
managed efficiently [15,16,17,26,28].

The objective of this paper is to give a brief overview of definitions of keys
that have been proposed in the research literature. Our focus is on the key notion
of Buneman et al., but we also address alternative proposals [3,4,32].
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2 Prerequisites

It is common to represent XML data by ordered, node-labelled trees. Such a
representation is e.g. used in DOM [1], XPath [13], XQuery [6], XSL [22], and
XML Schema [27]. Figure 1 shows an example of XML data represented as a
tree in which nodes are annotated by their type: E for element, A for attribute,
and S for text (PCDATA).

In the literature devoted to research on XML constraints, several variations
of the tree model for XML data have been used. All of them simplify the XML
standard [7] by concentrating on its major aspects. Here we follow the approach
taken in [10,11]. We assume that there are three mutually disjoint non-empty
sets E, A, and S = {S}. In the sequel, E will be used for element names, A
for attribute names, and S for denoting text. We further assume that these sets
are pairwise disjoint, and put L = E ∪A ∪ S. We refer to the elements of L as
labels.

2.1 XML Trees and Paths

An XML tree is defined as a 6-tuple T = (V, lab, ele, att, val, r). Herein V denotes
the set of nodes of T , and lab is a mapping V → L assigning a label to every
node in V . The XML tree is said to be finite if V is finite. A node v in V is
called an element node if lab(v) ∈ E, an attribute node if lab(v) ∈ A, and a text
node if lab(v) ∈ S. Further, ele and att are partial mappings defining the edge
relation of T : for any node v in V , if v is an element node, then ele(v) is a list
of element and text nodes in V , and att(v) is a set of attribute nodes in V . If
v is an attribute or text node then ele(v) and att(v) are undefined. For a node
v ∈ V , each node w in ele(v) or att(v) is called a child of v, and we say that
there is an edge (v, w) from v to w in T . Let ET denote the set of edges of T ,
and let E∗

T denote the transitive closure of ET . Further, val is a partial mapping
assigning a string value to each attribute and text node: for any node v in V ,
if v is an attribute or text node then val(v) is a string, and val(v) is undefined
otherwise. Finally, r is the unique and distinguished root node of T .

A path expression is a finite sequence of zero or more symbols from some
alphabet M. The unique sequence of zero symbols is called the empty path ex-
pression, denoted by ε, and a dot (.) is used to denote the concatenation of path
expressions. The set of all path expressions over M, with the binary operation
of concatenation and the identity ε form a free monoid. We are in particular
interested in path expressions over the alphabet L which we call simple.

A simple path p of an XML tree T is a sequence of nodes v0, . . . , vm where
(vi−1, vi) is an edge for i = 1, . . . ,m. We call p a simple path from v0 to vm, and
say that vm is reachable from v0 following the simple path p. The path p gives
rise to a simple path expression lab(v1). · · · .lab(vm), which we denote by lab(p).
An XML tree T has a tree structure: for each node v of T , there is a unique
simple path from the root r to v.
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2.2 Value Equality

Next we define value equality for pairs of nodes in XML trees. Informally, two
nodes u and v of an XML tree T are value equal if they have the same label and,
in addition, either they have the same string value if they are text or attribute
nodes, or their children are pairwise value equal if they are element nodes. More
formally, two nodes u, v ∈ V are value equal, denoted by u =v v, if and only if
the subtrees rooted at u and v are isomorphic by an isomorphism that is the
identity on string values. That is, two nodes u and v are value equal when the
following conditions are satisfied:

(a) lab(u) = lab(v),
(b) if u, v are attribute or text nodes, then val(u) = val(v),
(c) if u, v are element nodes, then (i) if att(u) = {a1, . . . , am}, then att(v) =

{a′1, . . . , a′m} and there is a permutation π on {1, . . . ,m} such that ai =v a
′
π(i)

for i = 1, . . . ,m, and (ii) if ele(u) = [u1, . . . , uk], then ele(v) = [v1, . . . , vk]
and ui =v vi for i = 1, . . . , k.

For example, the second and third author node (according to document order)
in Figure 1 are value equal. Notice that the notion of value equality takes the
document order of the XML tree into account. We remark that =v defines an
equivalence relation on the node set of an XML tree.

Consider two subsets U and W of V . We call U and W value equal if there
exists a bijection β : U → W such that u =v β(u) for all u ∈ U . The value
intersection U ∩v W of U and W consists of all pairs (u,w) ∈ U ×W such that
u =v w holds, and the value difference U −v W consists of all nodes in U that
are not value equal to any node in W .

2.3 Node Selection Queries

A node selection query Q defines a mapping [[Q]]T : V → 2V that assigns every
node v ∈ V a subset of V, called the selected nodes, that may be seen as the
result of executing the query at node v.

For node selection queries we can define operations like union, intersection,
concatenation, reverse, absolution and the identity as follows, cf. [13]:

[[Q1 ∪Q2]]T (v) := [[Q1]]T (v) ∪ [[Q2]]T (v)
[[Q1 ∩Q2]]T (v) := [[Q1]]T (v) ∩ [[Q2]]T (v)

[[Q1.Q2]]T (v) := {x : w ∈ [[Q1]]T (v), x ∈ [[Q2]]T (w)}
[[QR]]T (v) := {x : v ∈ [[Q]]T (x)}
[[QA]]T (v) := [[Q]]T (r)

[[ε]]T (v) := {v}

Depending on the particular application one aims to identify query languages
that enable users to retrieve as much data as possible that is relevant for the
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underlying application domain, yet sufficiently simple to process the queries ef-
ficiently. A problem that has been widely studied in the literature due to its im-
mediate practical relevance is the containment problem. A node selection query
Q is said to be contained in a node selection query Q′, denoted by Q � Q′, if
for every XML tree T and every node v ∈ V we have that [[Q]]T (v) is a subset
of [[Q′]]T (v). Two queries are (semantically) equivalent, denoted by Q ≡ Q′, if
they contain one another. The containment problem for a class of queries asks
to decide containment, while the equivalence problem asks to decide equivalence
for the query class under inspection.

It remains to find a convenient way to express useful node selection queries
that can be evaluated efficiently. In the literature regular languages of path
expressions have been widely used for this purpose. Alternatively, XPath ex-
pressions [13] are of course popular, too. For recent tractability results on the
containment and equivalence problem for regular path languages and XPath
fragments we refer to [5,14,18,23,24,25,31].

3 Keys for XML

In this section we attempt to give a definition of keys for XML data that is
sufficiently general to cover most of the existing proposals for defining such
constraints. We should note that this definition might not always provide the
most convenient way of expressing the constraint at hand nor reveal the most
efficient way for tackling the associated decision problems.

An XML key is a pair σ = (C,Q,F) where C and Q are node selection
queries, and F = {F1, . . . , Fk} is a finite set of node selection queries. Adapting
the terminology of [27], we call C the context, Q the selector and F1, . . . , Fk the
fields of the key σ. Given an XML tree T , [[C]]T (r) is called the context node set.
For any context node u, [[Q]]T (u) is called the target node set, and for any target
node v and every i = 1, . . . , k we call [[Fi]]T (v) a key node set.

An XML tree T satisfies an XML key σ = (C,Q,F) if for any target nodes u, v
that belong to the same target node set it holds that if for all i = 1, . . . , k their
key node sets [[Fi]]T (u) and [[Fi]]T (v) agree then the nodes u and v themselves
agree.

3.1 Agreement of Nodes

In the literature different authors have suggested different approaches for defin-
ing agreement of target nodes and of key node sets. To continue with we will
summarize the most popular proposals. For the agreement of two key node sets
the following criteria are potentially of interest:

(Ka) [[Fi]]T (u) and [[Fi]]T (v) are equal,
(Kb) [[Fi]]T (u) and [[Fi]]T (v) have non-empty intersection,
(Kc) [[Fi]]T (u) and [[Fi]]T (v) are value equal,
(Kd) [[Fi]]T (u) and [[Fi]]T (v) have non-empty value intersection.
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For the agreement of two target nodes u and v the following criteria are
potentially of interest:
(Ta) u = v, that is, u and v are identical nodes,
(Tb) u =v v, that is, u and v are value equal nodes.

Moreover, one might want to combine these requirements with one or more of
the following criteria for some or all i = 1, . . . , k:
(Tc) both [[Fi]]T (u) and [[Fi]]T (v) are non-empty,
(Td) both [[Fi]]T (u) and [[Fi]]T (v) contain at most one node,
(Te) both [[Fi]]T (u) and [[Fi]]T (v) contain only attribute or text nodes.

3.2 Strong Keys Defined in XML Schema

As an example we consider keys as defined in XML Schema [27]. For such a key
σ to hold it is necessary that for each target node v each of the key fields Fi with
i = 1, . . . , k selects exactly one key node. This prerequisite calls for uniqueness
and existence. Buneman et. al [9] call a key with such a prerequisite strong.

XML Schema [27] uses criterion (Kd) above for the agreement of key node
sets. Note that if the prerequisite holds then criteria (Kc) and (Kd) coincide, and
so do criteria (Ka) and (Kb). Moreover, this prerequisite imposes a condition on
each target node. Even if there is only a single target node v in an XML tree T
the key will be violated when one of the key node sets [[Fi]]T (v) is not a singleton
set. To avoid that in such a case the target node v agrees with itself one chooses
criteria (Ta,Tc,Td) for the agreement of target nodes. Further, criterion (Te)
accounts for the restriction of value equality to string equality in XML Schema.

XML Schema further defines a weaker version of the previous key notion,
called unique. For such a constraint σ to hold it is necessary that for each target
node v each of the key fields Fi with i = 1, . . . , k selects no more than one
key node. Again criterion (Kd) is used for the agreement of key node sets, and
criteria (Ta,Td,Te) for the agreement of target nodes.

3.3 Absolute and Relative Keys

A key of the form (ε,Q,F) is called absolute. That is, in case of an absolute
key the root node is the single context node. To emphasize that in general the
key context C may also be chosen differently, one speaks of relative keys. It
should be noted that every relative key may be rewritten as an absolute key by
transforming the key context C into an additional key field with criterion (Kb)
above: It can be shown that an XML tree satisfies (C,Q,F) if and only if it
satisfies (ε, C.Q,F ∪ {CA ∩QR}). However the latter representation of the key
might be less intuitive in many cases.

4 Popular Existing Proposals for XML Keys

4.1 Keys Defined by Buneman et al.

In [8,10] Buneman et al. introduce and study absolute and relative keys that do
not have the uniqueness and existence prerequisite of the strong keys defined in
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XML Schema [27]. This proposal is mainly motivated by the observation that
strong keys are not always finitely satisfiable. That is, there are keys for which
there is no a finite XML tree that satisfy them. To overcome this situation,
Buneman et al. define keys using criteria (Kd) for the agreement of key node
sets, and only (Ta) for the agreement of target nodes.

For node selection queries they define the path language PE consists of all
path expressions over the alphabet L ∪ { , ∗}, with the binary operation of
concatenation and the empty path expression ε as identity. Herein, and ∗ are
symbols not in L that serve as the single symbol wildcard and the variable length
wildcard. The semantics of path expressions from PE is defined by putting:

[[�]]T (v) := {w | (v, w) ∈ ET , labT (w) = �}
[[ ]]T (v) := {w | (v, w) ∈ ET }

[[ ∗]]T (v) := {w | (v, w) ∈ E∗
T }

The semantics of the concatenation operator and of ε is defined as for general
node selection queries. When comparing PE and XPath [13], one observes the
equivalences ε ≡ . and ≡ ∗ and ∗ ≡ .//. and Q1.Q2 ≡ Q1/Q2 and Q1//Q2 ≡
Q1.

∗.Q2 showing that PE corresponds to the XPath fragment XP (., /, ∗, //).
In [8,10] PE expressions are used for the context C and the key selector Q,

while simple path expressions from are used for the key fields F1, . . . , Fk. At
the end of [10] the use of PE expressions for the key fields is briefly discussed
based on a more restrictive definition of value intersection for key node sets:
The limited value intersection [[Fi]]T (u) ∩lv [[Fi]]T of key node sets [[Fi]]T (u) and
[[Fi]]T (v) consists of all pairs (x, y) ∈ [[Fi]]T (u) × [[Fi]]T (v) such that x =v y
holds and for which a simple path expression F � Fi with x ∈ [[Fi]]T (u) and
y ∈ [[Fi]]T (v) exists.

As an example consider the XML tree in Figure 1 and suppose we replace the
author nodes by firstauthor and secondauthor nodes. Suppose further we have
a key (ε, ∗.publ, ∗.last) with the publ nodes as targets. The field ∗.last would
then pick two last nodes for the first publ node, and one last for the second publ
node. The value intersection of the two key node sets would contain the two last
nodes for Libkin as a pair, while the limited value intersection would be empty.

In [9,11] Buneman et al. study the axiomatisability and implication problem
of the keys introduced in [8,10]. This time they restrict themselves to the path
language PL consisting of all path expressions over the alphabet L ∪ { ∗}. PL
expressions are used for the key context C, the key selector Q and the key fields
F1, . . . , Fk. In [9] agreement of key node sets is is based on limited value inter-
section, while in [11] it is based on the original definition of value intersection.

Several authors have continued to investigate relevant properties for this class
of keys. Without claiming to be complete we will mention a few. In [12] Chen et
al. study efficient ways for validating keys against an XML tree. Their procedure
can be used for checking the semantic correctness of an XML tree and for check-
ing incremental updates made to an XML tree. Its asymptotic performance is
linear in the size of the input tree and the input keys.
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In [19] Grahne and Zhu develop efficient methods for mining keys that are
satisfied by an XML tree. The keys they search for use path expressions over the
alphabet L ∪ { }. Their algorithm also looks for keys that hold only in certain
parts of the tree. These approximate keys may serve as candidate keys for views.

In [29] Vincent et al. use absolute keys with simple path expressions as se-
lectors and fields F1, . . . , Fk and with k ≥ 1. In particular, they emphasize that
such a key corresponds to a strong functional dependency as defined and studied
in [29]. Note that Buneman et al. [11] give an example of a key with k = 0 and
emphasize that such a key may cause inconsistency in the presence of a DTD.

In [21] Hartmann and Link give an axiomatisation for the class of keys where
context C and selector Q are PL expressions, and the fields Fi are simple path
expressions with k ≥ 1. The completeness proof is based on a characterisation of
key implication in terms of reachability of nodes in a suitable digraph constructed
from a key to reasoned about. Utilising the efficient evaluation of Core XPath
queries [18] this gives rise to a decision procedure for the implication of this key
class that is quadratic in the size of the input keys.

More recently, Wang [30] has investigated the axiomatisability and implication
problem for keys where the path expressions may include the single symbol
wildcard . Her results exploit a correspondence between XML keys and tree
patterns that have been used by Miklau and Suciu [23] to study containment
problem for certain XPath fragments.

In [20] Hartmann and Link extend XML keys to numerical constraints for
XML. While keys are intended to uniquely determine nodes in an XML tree,
numerical constraints only do this up to a certain number of nodes. For this
number one may specify bounds. The implication problem is shown to be in-
tractable for some classes of numerical constraints. For the class of numerical
keys with arbitrary integers as upper bounds and with PL expressions as context
and selector, simple path expressions as fields, and k ≥ 1, however, implication
can be decided in quadratic time using shortest path methods.

4.2 Keys Defined by Arenas et al.

Motivated by the key notion of XML Schema, Arenas et al. [2,3,4] study absolute
and relative keys. The focus is on the investigation of consistency problems for
strong keys (and strong foreign keys). As context C and selector Q they use
path expressions of the form ∗.� with � ∈ E, and as key fields F1, . . . , Fk labels
from A, where k ≥ 1. For the agreement of target nodes they choose criterion
(Ta), and for the agreement of key node sets criterion (Kd) for all i = 1, . . . , k.
It should be noted that key fields are limited to the labels of attributes whose
existence is guaranteed by a DTD (or XSD). At the same time the uniqueness of
attributes is guaranteed by the XML standard [7]. Thus, Fi(v) is a singleton set
for every i = 1, . . . , k, such that criteria (Tc,Td,Te) for the agreement of target
nodes are automatically satisfied.

In [3,4] Arenas et al. further study absolute keys with a selector Q of the form
Q′.� where � ∈ E andQ′ denotes a regular expression over the alphabet E∪{ }. In
[2] the discussion is extended to absolute keys with path expressions as permitted
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by XML Schema [27]. In particular, Arenas et al. show that the consistency
problem is NP-hard already for strong keys with k = 1 in the presence of a
non-recursive and no-star DTD.

4.3 Keys Defined by Yu and Jagadish

In [32] Yu and Jagadish study data redundancies in XML that are caused by func-
tional dependencies. The focus is on the development of an efficient partition-
based algorithm for discovering certain functional dependencies, including keys.

For that they also give a definition of absolute keys for XML that shares
some similarity with the notion of Buneman et al. First of all, [32] does not take
document order into account. This leads to a different notion of value equality:
Two nodes that are value equal in [32] might not be value equal by the original
definition above if the order of their element children differ. For the agreement
of target nodes Yu and Jagadish choose criterion (Ta), and criterion (Kc) for
the agreement of key node sets for all i = 1, . . . , k. For the key selector they
use simple path expressions, and for the key fields expressions from the XPath
fragment XP (., /, ..). That is, key fields may involve simple upward steps.
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Abstract. It is a desirable feature of knowledge bases that they are
able to accommodate and reason across the different perspectives that
may exist on a particular theory or situation. With the aim of obtain-
ing an adequate logic for this problem, the knowledge representation
community has extensively researched into the formalization of contexts
as first-class citizens. However, most of the proposed logics of context
only deal with the propositional case, which for many applications is not
enough, and those tackling the quantificational case face many counterin-
tuitive restrictions. In this paper, we present a model-theoretic semantics
that, based on a cognitive approach to the notions of context and mean-
ing, succeeds in addressing the quantificational case in a flexible manner
that overcomes the limitations of the previous initiatives. The expressive
power of the system will be evaluated in the paper by formalizing some
of the benchmark examples that can be found in the literature.

1 Introduction

In Knowledge Bases logic is mainly used to infer the consequences and to check
the consistency of formally described theories. The predicate calculus and the de-
cidable fragments of it, such as some Description Logics [22], are by far the most
commonly adopted logics for the representation of knowledge. However, the lan-
guage of first-order logic was originally designed to formalize the foundations of
mathematics, in which the notion of context is irrelevant, and not our ordinary
theories which are inherently subject to a particular perspective. Therefore, al-
though the semantics of the predicate calculus has proved to be very successful in
the representation of what Quine [23] came to call the “eternal truths” of mathe-
matics, its application to the theories we normally aim to develop does not result
adequate, since their scope is not so broad and it is always relatively easy to find
a more general context in which a particular theory fails to hold.

With the aim of solving this problem, to which McCarthy referred [19] as
that of Generality in Artificial Intelligence, a new research programme emerged
with the intention of creating a logic of context [20] whose language would be
capable of referring to contexts as first-class individuals, so that the scope of the
expressed theories could be delimited. However, the ultimate goal of the logic
was not limited to accommodate the different perspectives that may exist on
a particular theory but also looked into enabling the reasoning across different
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contexts, so that the facts that hold in a given context can affect the ones that
hold in another.

Since this programme was initiated, many logics have been proposed to for-
malize contexts, among which the best known are [4] ,[5], [9], and [13]. However,
most of these logics only deal with the propositional case which, as shown by the
benchmark examples included in [12], is not expressive enough in most of the
cases. And those that address the quantificational case [4] face many counterin-
tuitive restrictions, like the imposition of constant domains or the requirement
that the same facts hold in a particular context regardless of the outer context
in which it is described.

Although the cognitive approach to contexts of these logics has helped in
overcoming many of the problems of the approaches that, in the metaphysical
tradition outside the AI community, considered contexts as part of the structure
of the world ([15], [17]), we think that a satisfactory logic of context that aims to
model all the desiderata of context will need to go one step further by defining
the notion of meaning from a cognitive perspective. We judge that it is well
justified by recent findings in cognitive science ([16], [8]) to consider meaning as
a cognitive function and not as an abstract metaphysical notion. In our view, the
externalist semantics of the previous initiatives, in which meaning is considered
to be a disembodied function, is the cause of their problems and limitations.

In this paper we present a logic of context that, based on a cognitive approach
to both context and meaning, succeeds in addressing the quantificational case in
a flexible manner that overcomes the problems and limitations of the previous
attempts to build a satisfactory logic of context. However, the importance of
the results is increased by the fact that the expressive power of the logic here
presented is superior to that of any prior logic of context, since our cognitive
approach to meaning allows that not only contexts but also interpretations are
treated as first-class citizens.

The paper is structured as follows. In the second section, we will review the AI
research on contexts within the framework of knowledge representation. In the
third section, we will firstly introduce the intuitions that guide our semantics
and the desiderata of a logic of context, and then we will proceed to present
the model-theoretic semantics that we propose. In the fourth section, we will
show the expressive power of the formal language associated with the semantics
by formalizing some of the benchmark examples that can be found in [12]. In
the fifth section, we will describe the related work. We will finish the paper by
extracting some conclusions.

2 AI Research in Contexts

Although the problem of contexts has been tackled in other different disciplines
like cognitive science [7], philosophy [17] and linguistics [15], the scope of this
review will be limited to the work done in the area of knowledge representation
and reasoning1.
1 A more interdisciplinary survey of the notion of context can be found in [14].
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We will focus our attention on the Propositional Logic of Context(PLC) [5],
the Local Model Semantics/Multi-Context Systems(LMS/MCS) ([9], [11]) and
the Quantificational Logic of Context(QLC), which are the best known logics of
context2. Although the first two systems only deal with the propositional case,
the main purpose of this review is to introduce their different intuitions and
limitations in the project of the formalization of contexts3. This will facilitate the
understanding of the comparison of these logics with the semantics we propose
in the next sections.

2.1 Propositional Logic of Context

The language of PLC [5] is that of a multi-modal logic whose modalities are
constructed in a predicative fashion by means of the expression ist and a set
of context labels K. So that if k is a context label contained in K and ϕ is a
proposition, then ist (k, ϕ) is a well-formed formula indicating that ϕ holds in the
modality determined by the context k. The nesting of modalities in a formula like
ist (k1, ist(k2, ϕ)) amounts to stating that ϕ is true in the context label resulting
from the concatenation of k1 and k2. A formula is said to be true in a particular
context label if it is satisfied by all the partial assignments associated with that
context label. The notion of partial assignment is intended to model the intuition
that some propositions contained in an initial global vocabulary may not be part
of the local vocabulary of a context and, therefore, the assignments associated
with that context will not define a truth value for these propositions. The rea-
soning across contexts is performed by the so-called lifting rules, which are a set
of clauses normally in the form ist (k1, ϕ1), . . . , ist (kn, ϕn) ⊃ ist (kn+1, ϕn+1)
that relate the facts that hold in a context with those that hold in another.

Apart from having an expressive power limited to the propositional case and
not handling contexts as truly first-class citizens, the notion of local vocabulary
that PLC proposes seems to be too restrictive and too weak at the same time.

On one hand, it is too restrictive because it imposes that the description
of the facts that hold in an inner context is exclusively done in terms of the
local vocabulary of that inner context. However, in many cases this restriction
seems certainly counterintuitive. Let us consider the case of an English/Basque
speaker that tells us about the beliefs of a Basque friend of hers who does not
speak English at all, there is no good reason why she could not describe that
context to us by using her English vocabulary, if this is rich enough to cover all
the ideas included in her Basque friend’s beliefs.

On the other hand, the notion of local vocabulary is too weak because the
local vocabulary of a context is obtained by restricting a global vocabulary at
the moment of defining the partial assignments associated with that context.
In our opinion, the assumption of a global vocabulary contradicts the idea of
a local language, we judge that it would be better to talk about a global set
of non-logical symbols or alphabet whose types are locally determined. We will
describe this idea in more detail in the next section.
2 A more detailed review of these and other approaches can be found in ([1], [3]).
3 We refer to [24] for an excellent comparison of their technical details.
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2.2 Local Model Semantics/Multi-Context Systems

LMS/MCS ([9], [11] ) is based on the concepts of locality and compatibility. The
first one encodes the intuition that the reasoning is local to each context and
therefore each context has its own vocabulary and its own set of inference rules.
The second one means that, since contexts are assumed to be different perspec-
tives on the same world, there must be a compatibility relation that determines
what perspectives can coexist harmoniously and what perspectives are contra-
dictory in case they coexist. This compatibility relation is syntactically expressed
through a set of so-called bridge rules that, in contrast with the inference rules,
does not belong to any context.

Again LMS/MCS does not address the quantificational case and, as we will
show in the fifth section, this is not enough for many of the cases. Even in the
case that the contextualized formulas are well-formed formulas of the predicate
calculus [10], contexts are not treated as first-order citizens and this is a hard
limitation in many applications.

On the other hand, the principle of locality in LMS/MCS is so strong that,
it does not allow even to refer to the facts that hold in other contexts, if not in
the way of artificially constructed auxiliary propositions. We consider that this
restriction is too strong since even if the meaning of some symbols is unknown
in a certain context these symbols can be used to describe a context and refer
to an external interpretation in order to extract their meaning.

Let us consider a situation in which an English/Basque speaker and a mono-
lingual English friend of hers are involved. This time the multilingual speaker is
so angry with her English friend that she has promised that for a day she will
always say the truth but she will only do it in Basque. After having asked her the
time, the English friend could confidently tell us that in the context of the beliefs
of her multilingual friend the time is “ordu bata hogeita bost gutxi” when this
is interpreted in Basque. In many cases the use of an external vocabulary will
be justified by a desire to externalize to a different interpretation the meaning
given to some of the symbols contained in a formula, which is a tool heavily used
by journalists for example. In the next section, we will show how to materialize
this feature.

In our opinion, the fact that LMS/MCS requires the bridge rules not to belong
to any particular context contradicts the initial motivations of a logic of context.
We think that like any other theory the relations between contexts are subject
to different perspectives and therefore it seems reasonable that their scope is
also limited.

2.3 Quantificational Logic of Context

In line with the notion of local validity proposed by PLC, the Quantificational
Logic of Context [4] determines the truth of a formula in a particular context by
associating a set of typed first-order structures with each context. These struc-
tures are typed because, in contrast with PLC and LMS/MCS, QLC formalizes
contexts as first-class citizens having their own sort. Therefore, QLC enables the
ascription of properties and relations to contexts and the quantification over them.
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However, QLC requires many counterintuitive restrictions that limit very
much its utility. First, it requires that the universe of discourse is the same
for every context. It is desirable for a logic of context to allow for flexible do-
mains so that the set of existing individuals can be different depending on the
context. Actually, we go one step further and, in the spirit of Modal Realism
[18], we identify a context as the sum of its existing individuals, what will be
technically detailed in the third section. Second, it forces every constant symbol
to denote the same object regardless of the context in which it is interpreted,
or in other words, constants are rigid designators. Clearly, this contradicts all
what has been previously said about contextual vocabularies. Third, the set of
facts that hold in a context is not subject to any particular perspective and,
therefore, the way in which contexts are nested is irrelevant. Like in the case of
LMS/MCS bridge rules, we think that this condition, known as flatness, clashes
with the very spirit of a logic of context whose original goal is the formalization
of every theory as a particular perspective on the world.

3 Embodied Context Semantics

3.1 The Cognitive Approach to Context and Meaning

All these limitations and problems of the prior logics of context ledGuha and
McCarthy [12] to elaborate a classification, centred around the concept of lifting
rule, of the different kinds of situations in which the reasoning across contexts is
fundamental. However, we think that the success in the search for a satisfactory
logic of context will not only come from a good classification of contexts, but a
reconsideration of the notion of meaning used by these logics is also necessary.

In contrast with the metaphysical tradition ([15], [18]) that understands con-
texts as part of the structure of the world and, therefore, faces the problem
of determining the complete set of indexicals that determine a unique context,
the cognitive approach to contexts of [4], [5], [9] and [13] considers contexts as
the partial information that an agent has about the circumstances in which she
performs an interpretation. In our opinion, although the cognitive approach to
contexts has been very useful in avoiding the problem with indexicals of the
metaphysical tradition, there exists a confusion between the context in which a
sentence is interpreted and the context that is being described from which the
sentence obtains its referents. In a very different approach to the one presented
here, Barwise and Perry [2] came to classify respectively these kinds of contexts
as the situation of utterance, focus situation and the resource situation [6].

In most of the cases that [4], [5], [9] and [13] refer to contexts, they are actually
regarding them to be more proximate to the concept of described context than
to that of context of interpretation. When a context is said to determine its local
vocabulary in these logics, it does not seem that this is thought to be due to
a shift in the interpretation of the non-logical symbols but to a change in the
ground of referents from which the non-logical symbols obtain their denotation.
Furthermore, even assuming that both the concept of described context and the
concept of context of interpretation are contemplated in [4], [5], [9] and [13],
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there is no reason why both roles should always be realized by the same context,
which is always the case in these logics.

In our view, the problem is that these logics keep the externalist semantics of
the predicate calculus, in which meaning is regarded as an abstract function from
symbols to their extension in the world, but adapting their extensions to the case
of partial contexts instead of a complete world. Although the externalist notion
of meaning has been very successful in the interpretation of axioms expressed
in an commonly agreed vocabulary and whose validity is applicable to every
conceivable context, we think that a disembodied approach will never be able to
model all the desiderata of a logic of context. Its consideration of meaning as a
metaphysical function instead of as a situated action excludes the very idea of
context.

We claim that, in order to overcome the problems and limitations of the
previous logics of context, it is necessary to go one step further and create
a logic of context and interpretation that, based on a cognitive approach to
context and meaning, not only formalizes contexts but also interpretations as
first-class citizens. In the next subsection, we present the technical details of the
model-theoretic semantics we have developed with this aim.

3.2 The Semantics

Our logic is developed on the intuition that its non-logical symbols do not have a
rigid associated type but their typing depends on the interpretation under which
they are being considered. Therefore, the alphabet does not contain different sets
of typed non-logical symbols but only a set of primitive non-typed non-logical
symbols. Although traditionally the variables are not considered as part of the
non-logical symbols, we think that there is no good reason why their typing
could not be also subject to interpretation and consequently we have neither
included a set of variable symbols in the alphabet. The alphabet of the logic of
context and interpretation consists, therefore, of the following symbols:

1. An enumerable non-empty set NLS of non-logical symbols
2. Identity and part relations: = , �
3. External and internal negation: ¬ ,¯
4. Connectives: ∨, ∧, ⊃
5. Quantifiers: ∀ , ∃
6. Alethic modalities: ♦ , �
7. Auxiliary symbols: : , [ , ] , “, ”

As we said in the previous subsection, the logic needs to refer to the inter-
pretation that must be used to extract the meaning of a non-logical symbol.
Below, we define the set on non-logical expressions NLEXP , which includes the
non-logical symbols and their quotation under another non-logical symbol. The
non-logical expression “ξ”µ can be read as “ξ when interpreted under µ”.

Definition 1. NLEXP is the smallest set of expressions X satisfying the fol-
lowing properties:
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1. ξ ∈ NLS ⇒ ξ ∈ X
2. ξ ∈ NLS and µ ∈ X ⇒ “ξ”µ ∈ X

As the typification of the non-logical symbols depends on the interpretation
under which are considered, the set of well-formed formulas depends on the
model in question. However, we can inductively define the set of possibly well-
formed formulas that defines the formulas that under a possible interpretation
can be well-formed formulas and excludes those that are grammatically incorrect.
We think that the notion of possibly well-formed formula is very important in
the conceptual separation between the vocabulary and the grammar. While the
vocabulary is local and therefore interpretation-sensitive, the grammar is global
and therefore interpretation-independent.

Many of the possible well-formed formulas (pwffs) have a similar form to
those of first-order modal logic. However, there are some novel symbols whose
character will be better understood by showing their reading. First, the logical
symbol � can be read as “is part of”. Its treatment as a logical symbol entails
that its axiomatization will be part of the axioms of the logic. Second, while
the external negation ¬P (t1, . . . , tn) is read as “it is not the case that P applies
to t1, . . . , tn”, the internal negation P (t1, . . . , tn) is read as “it is the case that
non-P applies to t1, . . . , tn”, what intuitively demands the existence of t1, . . . , tn.
Third, the pwff k : [A] facilitates the contextualization of other pwffs and can
be read as “it is the case that A holds in k”.

Definition 2. PWFF is the smallest set of expressionsX satisfying the following
properties:

1. t1, t2 ∈ NLEXP ⇒ t1 ◦ t2 ∈ X,where ◦ ∈ {=,�},
2. t1, . . . , tn ∈ NLEXP and P ∈ NLEXP ⇒ P (t1, . . . , tn), P (t1, . . . , tn) ∈ X,
3. A ∈ X ⇒ ¬A ∈ X,
4. A,B ∈ X ⇒ [A ◦B] ∈ X,where ◦ ∈ {∨,∧,⊃},
5. x ∈ NLEXP and A ∈ X ⇒ (∀x) [A] , (∃x) [A] ∈ X,
6. A ∈ X ⇒ ♦A,�A ∈ X,
7. k ∈ NLEXP and A ∈ X ⇒ k : [A] ∈ X.

Our model is a typed structure based on three different sets, namely Id, Ik and
Ii, which intuitively contain the objects of the discourse sort, which traditionally
form the universe of discourse in first-order structures, the objects of the context
sort and the objects of the interpretation sort respectively. The partial ordering
� encodes the mereological4 intuition that the set of existing objects in a context
is equivalent to the sum of its parts. The local vocabulary5 and the typification
of the non-logical symbols under a given interpretation is determined by the
language function l. The meaning function m assigns to each interpretation a
relation between the non-logical symbols of its language and their set of possible
extensions of the corresponding sort. The function r denotes the realization of
any member of Id, Ik and Ii as a context in Ik. Finally, ωk and ωi are respectively
the actual context and the actual interpretation.
4 For an excellent introduction to mereology see [25].
5 Note that for simplicity of the presentation, our logic has no functions.
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Definition 3. A model, M, is a structure M = 〈Id, Ik, Ii,�, l,m, r, ωk, ωi〉
where:

1. Id, Ik and Ii are three non-empty sets,
2. � is a partial ordering on I, where I = Id ∪ Ik ∪ Ii,
3. l is a function l : Ii → L, where L is the collection of structures consisting

of the disjoint sets Vσ, Cσ,Pσ1×···×σn for any σ, σ1, . . . , σn ∈ {d, k, i},
4. m is a function such that

m(ι) ⊆
(
(Cι

σ × Iσ) ∪
(
Pι

σ1×···×σn
× Iσ1 × · · · × Iσn

))
, (3.1)

where ι is a member of Ii and Cι
σ and Pι

σ1×···×σn
refer to the vocabulary of

ι according to l,
5. r is a function r : I → Ik,
6. ωk is a member of Ik and ωi is a member of Ii.

Let M be a model such that M = 〈Id, Ik, Ii,�, l, r,m, ωk, ωi〉, ι is a member
of Ii and l(ι) = 〈,Vσ, CσPσ1×···×σn〉, we will use IM

d , IM
k , IM

i and IM to refer
to Id, Ik, Ii and I respectively; VM,ι

σ , CM,ι
σ and PM,ι

σ1×···×σn
to refer to Vι

σ, Cι
σ and

Pι
σ1×···×σn

respectively; �M, mM, rM, ωM
k and oiM to refer to �, m, r, ωk and

ωi respectively.
Below, we proceed to define the concept of assignment and x-variant assign-

ment that will later facilitate the valuation of the pwffs.

Definition 4. An assignment ϕ into a model M is a function such that

ϕ(ι) ⊆
(
VM,ι

σ × IM
σ

)
, (3.2)

where ι is a member of IM
i and σ ∈ {d, k, i}.

Definition 5. Let ϕ and ψ be two assignments into M. We say that ψ is an
x-variant of ϕ and therefore belongs to the set x-VARIANTϕ if:

(∀ι, ξ)[ι ∈ IM
i ∧ ξ ∈

((
AM,ι ∪ VM,ι

σ

)
\ {x}

)
⊃ {z | 〈ξ, z〉 ∈ ϕ(ι)} = {z | 〈ξ, z〉 ∈ ψ(ι)}]

(3.3)

Below, we define the valuation of a non-logical symbol under a given interpreta-
tion, which is independent of the context that is being described.

Definition 6. Let ξ be a member of NLS , let M be a model whose meaning
function is denoted by mM, let ι be a member of IM

i , let ϕ be an assignment
into M, let σ1, . . . , σn, σ ∈ d, k, i. The valuation function into M under ι and ϕ,
formally vM,ι

ϕ : NLS → (IM)n, where n � 1, is defined as follows:

ξ ∈ VM,ι
σ ⇒ vM,ι

ϕ,σ (ξ) =
{
x ∈ IM

σ | 〈ξ, x〉 ∈ ϕ(ι)
}

(3.4)

ξ ∈ CM,ι
σ ⇒ vM,ι

ϕ,σ (ξ) =
{
x ∈ IM

σ | 〈ξ, x〉 ∈ mM(ι)
}

(3.5)

ξ ∈ PM,ι
σ1×···×σn

⇒ vM,ι
ϕ,σ1×···×σn

(ξ) =
{
x ∈ IM

σ1×···×σn
| 〈ξ, x〉 ∈ ϕ(ι)

}
(3.6)

Otherwise, vM,ι
ϕ,σ (ξ) = ∅ (3.7)
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Once we have obtained the valuation of the non-logical symbols, we can proceed
to obtain the denotations of the set of non-logical expression in a particular
described context.

Definition 7. Let ξ and µ be two members of NLEXP , let M be a model, let ι
be a member of IM

i , let κ be a member of IM
k , let ϕ be an assignment into M,

let σ1, . . . , σn ∈ {d, k, i}. The denotation function d into M under ι, κ and ϕ
for a sort σ1 × · · · × σn, formally dM,ι,κ

ϕ,σ1×···×σn
: NLEXP → IM

σ1
× · · · × IM

σn
, is

inductively defined on the construction of the members of NLEXP as follows:

dM,ι,κ
ϕ,σ1×···×σn

(ξ) = {x ∈ vM,ι
ϕ,σ1×···×σn

(ξ) | x �M κ} (3.8)

dM,ι,κ
ϕ,σ1×···×σn

(“ξ”µ) =
⋃

λ∈dM,ι,κ
ϕ,i (µ)

dM,λ,κ
ϕ,σ1×···×σn

(ξ) (3.9)

Once we have obtained the denotations of the non-logical expressions in every
possible described context, we can proceed to define the valuation function of
the pwffs.

Definition 8. Let M be a model, j be a member of IM
i and ϕ an assignment into

M. The valuation of the members of PWFF into M under ι and ϕ is inductively
defined on their construction as follows:

vM,ι
ϕ (P (t1, . . . , tn)) = {x ∈ IM | (∃y1, σ1, . . . , yn, σn) [y1 ∈ dM,ι,x

ϕ,σ1
(t1)

∧ · · · ∧ yn ∈ dM,ι,x
ϕ,σn

(tn) ∧ σ1, . . . , σn ∈ {d, k, i}
∧ 〈y1, . . . , yn〉 ∈ dM,ι,x

ϕ,σ1×···×σn
(P )]}

(3.10)

vM,ι
ϕ (P (t1, . . . , tn)) = {x ∈ IM | (∃y1, σ1, . . . , yn, σn) [y1 ∈ dM,ι,x

ϕ,σ1
(t1)

∧ · · · ∧ yn ∈ dM,ι,x
ϕ,σn

(tn) ∧ σ1, . . . , σn ∈ {d, k, i}
∧ 〈y1, . . . , yn〉 ∈ (Iσ1 × · · · × Iσn) \ dM,ι,x

ϕ,σ1×···×σn
(P )]}

(3.11)

vM,ι
ϕ (t1 � t2) = {x ∈ IM | (∃y1, σ1, y2, σ2) [y1 ∈ dM,ι,x

ϕ,σ1
(t1)

∧ y2 ∈ dM,ι,x
ϕ,σ2

(t2) ∧ σ1, σ2 ∈ {d, k, i} ∧ y1 �M y2]}
(3.12)

vM,ι
ϕ (¬A) = IM \ vM,ι

ϕ (A) (3.13)

vM,ι
ϕ ([A ∨B]) = vM,ι

ϕ (A) ∪ vM,ι
ϕ (B) (3.14)

vM,ι
ϕ ((∃x) [A]) =

⋃
ψ∈x-VARIANTϕ

vM,ι
ψ (A) (3.15)

vM,ι
ϕ (♦A) =

{
∅ if vM,ι

ϕ (A) = ∅
IM if not vM,ι

ϕ (A) = ∅
(3.16)

vM,ι
ϕ (t : [A]) = {x ∈ IM | (∃y, z)[y ∈ dM,ι,x

ϕ,k (t) ∧ y = rM(z)

∧ z ∈ vM,ι
ϕ (A)]}

(3.17)
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From the valuation of the pwffs, we can determine whether a formula is supported
or not by a model.

Definition 9. Let M be a model, let ϕ be an assignment into M and let A be
in PWFF . We write M �ϕ A iff ωM

k ∈ vM,ωM
i

ϕ (A), where � is pronounced as
“supports”.

Finally, we proceed to define the notions of satisfiability and validity.

Definition 10. Let M be a model, let ϕ be an assignment into M and let A be
in PWFF . We say that A is:

1. Satisfiable in M iff there is an assignment ϕ such that M �ϕ A.
2. Satisfiable iff there is a model M in which A is satisfiable.
3. Valid in M iff for every assignment ϕ, M �ϕ A.
4. Valid iff A is valid in every model.
5. Unsatisfiable iff there is no model in which A is satisfiable.

4 Some Illustrative Examples

In order to show the expressive power of the logic of context and interpretation
and give a flavour of the applications for which it can be used, we will formalize
some of the benchmark examples suggested in the classification of contexts that
can be found in [12]. Although we do not claim that this classification of contexts
is definitive, we think that the examples it contains, some of which cannot be
formalized in the previous logics of context, pose a big challenge for a logic that
claims to formalize context in a satisfactory way. The classification divides the
contexts based on their assumption and simplifications and according to the kind
of lifting rules they require. In this sense, it concludes that four major groups
of contexts exist, namely projection contexts, approximation contexts, ambiguity
contexts and mental state contexts. Below, we formalize three examples that
exploit much of the expressive power of our logic.

Example 1. A classical example is that of the normalcy/kindness conditions,
which falls into the category of the projection contexts. Below is shown an in-
stance of this example stating that every travel context is developed under nor-
mal conditions. As can be seen, our logic is capable of quantifying over contexts
and therefore there is no problem in the formalization of this example.

(∀k)[NormalConditions(k) ⊃ k : [(∀x)[clothed(x)∧
conscious(x) ∧ . . . ]]]

(4.1)

(∀k)[TravelContext(k) ⊃ k : [(∀x)[haveTicket(x) ∧ atAirport(x)
⊃ canFly(x)]]]

(4.2)

(∀k)[TravelContext(k) ⊃ NormalConditions(k)] (4.3)
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Example 2. Another example of projection contexts is that in which there is a
parameter suppression. The class of contexts to which the Above Theory de-
scribed below applies are static and, consequently, they do not contemplate the
idea of situation at all. However, the contexts to which the theory of Blocks
applies need to specify the situation at which a particular predicate holds and
they do this by adding a situation parameter to the predicates on and above.
Therefore, the meaning of these predicates is subject to two kinds of interpre-
tations, namely the AboveThInt and the BlocksInt. While the former will assign
to these symbols a type d× d, the latter will assign to them a type d× d× k.

(∀k)[AboveTheory(k) ⊃ k : [(∀x, y)[“on”AboveThInt(x, y)
⊃ “above”AboveThInt(x, y)]]]

(4.4)

(∀k)[AboveTheory(k) ⊃ k : [(∀x, y)[“above”AboveThInt(x, y)
∧ “above”AboveThInt(x, y) ⊃ “above”AboveThInt(x, y)]]]

(4.5)

(∀k1, k2)[Blocks(k1) ∧AboveTheory(k2)
⊃ (∀x, y)[k1 : [“on”BlocksInt(x, y, k2)] ≡ k2 : [“on”AboveThInt(x, y)]]]

(4.6)

(∀k1, k2)[Blocks(k1) ∧AboveTheory(k2)
⊃ (∀x, y)[k1 : [“above”BlocksInt(x, y, k2)]
≡ k2 : [“above”AboveThInt(x, y)]]]

(4.7)

Example 3. This last example is focused on the case of ambiguity contexts, and
more precisely, on the problems with the homonymy of the predicate Bank.
The context k1 uses the predicate Bank but it does not specify under which
interpretation, so that initially it could be understood both as a financial and
a river bank. However, in the outermost context it is stated that if somebody
withdraws money from a bank then the correct interpretation of the predicate
Bank is that of a financial bank. Like in the previous example, the ability of our
logic to quantify over interpretations facilitates the formalization of this example
in an elegant manner.

k1 : (∃x, i)[“Bank”i(x) ∧At(Jon, x) ∧ gotMoney(Jon, x)] (4.8)
(∀k, x, y)[k : [gotMoney(x, y) ⊃ “Bank”FinancialInt(y)]] (4.9)

5 Related Work

In line with the work of Kaplan [15] and Montague [21], the Contextual Inten-
sional Logic (CIL) [26] proposes a type-theoretic account of contexts, based on
the introduction of a new type for contexts into the type theory of Intensional
Logic [21]. Although the sorts of our system and the types of CIL are similar,
they constitute very different approaches to the problem of the formalization of
context.

In our view, CIL presents some limitations that are fundamental desiderata
of a logic of context. First, it ignores the notion of local vocabulary and conse-
quently the set of wffs is the same in every context. Second, the typification of
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the symbols is rigid and not subject to interpretations. Third, it does not seem
clear why the extension of a term under a particular index and context should be
limited to a single individual. We think that contexts should be able to tolerate
ambiguous denotations, what in our logic is achieved by differentiating between
external and internal negations.

6 Conclusions

In this paper we have presented a model-theoretic semantics for the formaliza-
tion of contexts based on a cognitive approach to the concepts of context and
meaning. The logic has proved to be successful in addressing the quantificational
case in a flexible manner that avoids the many counterintuitive problems and
restrictions of its predecessors.

In our opinion, one of the main reasons why the previous initiatives are so
limited is that they fail to differentiate between contexts and interpretations. We
think that this differentiation is not only desirable from a technical perspective
but it is also a conceptual requisite of a satisfactory formalization of contexts.
In this sense, we have claimed that a cognitive approach to meaning as an em-
bodied function is necessary to solve this problem. These intuitions have been
materialized in what we have come to call a logic of context and interpretation,
which not only handles contexts but also interpretations as first-class citizens.
As has been shown in the examples, in contrast to the previous logics of contexts,
our approach allows the formalization of the most challenging examples found
in the literature.

Our future work will be focused on developing a sound and complete ax-
iomatization of the system and studying the modeling of lexical ambiguity in
our semantics. We also intend to research into how to accommodate temporal
concepts, like events or actions, in our formalism.
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Abstract. Data integration on a human-manageable scale, by users without data-
base expertise, is a more common activity than integration of large databases. 
Users often gather fine-grained data and organize it in an entity-centric way, de-
veloping tables of information regarding real-world objects, ideas, or people. Of-
ten, they do this by copying and pasting bits of data from e-mails, databases, or 
text files into a spreadsheet. During this process, users evolve their notions of en-
tities and attributes. They combine sets of entities or attributes, split them again, 
update attribute values, and retract those updates. These functions are neither 
well supported by current tools, nor formally well understood. Our research 
seeks to capture and make explicit the data integration decisions made during 
these activities. In this paper, we formally define entity resolution and de-
resolution, and show that these functions behave predictably and intuitively in 
the presence of attribute value updates.  

1   Introduction 

The term data integration evokes images of large-scale projects by experts in database 
administration. In previous work [1], we noted that a much more common form of 
data integration happens as part of everyday user tasks. End users often gather and 
integrate task-specific data from a variety of sources: web pages, text files, spread-
sheets, e-mail messages, and relational databases. The data is often gathered into a 
tabular format such as a spreadsheet, where rows represent entities of interest and 
columns represent characteristics of or information about these entities. 

The resulting table is often refined during integration as the user makes decisions. 
Entities may be merged (resolution) or split (de-resolution). New attributes may be 
added to the table. Attribute values may be updated. Each of these decisions refines 
the conceptual model imposed by the user on the data. We seek to capture the imposi-
tion of schema and the integration decisions expressed during everyday data integra-
tion. Our long-term goal is to exploit the knowledge expressed in these actions in  
order to help solve the general information integration problem. Along the way, we 
seek to 

1. make the task of gathering, organizing, and using data from various sources easier, 
2. track provenance, refinement, and deployment of gathered information to provide a 

rich semantic context to the user, and 
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3. support re-use and sharing of expressed user integration actions and knowledge. 
 

In this paper, we contribute a formalization of the resolution, de-resolution, and up-
date functions, and show that they can be composed in useful ways. This definition 
allows us to maintain, traverse, and selectively reverse a history of resolution deci-
sions and updates.  

2   Formalizing the CHIME Model 

We have previously reported [1] on a prototype end-user application called CHIME 
(Capturing Human Intension Metadata with Entities) that supports the goals outlined 
above. CHIME supports creation and manipulation of a single, entity-centric virtual 
table. Rows in this table correspond to entity instances, while columns correspond to 
attributes of the entities. In this paper, we use the term “entity” to refer to an entity in-
stance. In addition to entity resolution/de-resolution, attribute resolution/de-resolution, 
and direct updates to attribute values, CHIME provides the following: 

 

− Copy and paste capability that includes the selected sub-document, its provenance, 
related context found within the source document, and an address, or mark [14] 
with which to re-visit the selection in its source context 

− On-the-fly schema definition and entity creation 
− Automatic creation of groups of entities 
− Export of the created relation in a variety of formats 
− Injection of selected attributes or entire entity records into other work products 
− Retention of integration decision history and reasoning 

 

In order to have a sound theoretical basis for our work, we wish to show that the incre-
mental refinement of an entity-centric relation, as done in CHIME, behaves predictably 
and intuitively. In the remainder of this paper, we formalize the CHIME model by outlin-
ing our assumptions, describing a conceptual model, defining a number of terms, propos-
ing and proving a number of lemmas, and proving two key theorems. 

We assume that each entity resolution operation is binary, that is, exactly two par-
ents participate in the generation of the resolved child, contributing attribute values to 
the child as specified in a user-supplied choice vector. We claim without proof that n-
way entity resolution may be achieved by iterative binary resolution. We also assume 
that each entity resolution operation is atomic. That is, if tuples t1 and t2 are the par-
ents of a resolved entity represented in tuple t3, then t1 and t2 cannot be the “parents” 
of any other resolved entity. We assume that each de-resolution operation is also 
atomic. That is, if we de-resolve t3 into t2 and t1, t3 leaves the relation and cannot de-
resolve into some other tuple pair. Finally, we assume that users may make updates to 
table rows at any time, each update affecting exactly one attribute in one row. Any 
update of a group of rows and columns can be accomplished by a sequence of such 
updates. 
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Let R be a relation schema, with instance r, which represents entities and their 
characteristics, and consists of the following attributes: 

− KeyVal, a monotonically increasing, integer-valued identifier that functions as a 
candidate key for R 

− {Attr1, Attr2, …AttrN}, a set of one or more user-visible attributes with user-
assigned names in R 

− Visible, a Boolean attribute that specifies whether a given tuple in r is currently 
visible to the user and eligible for resolutions and updates. Visible is initially True 
for entities in r prior to any entity resolution 

− {Parent1, Parent2}, a set of attributes in R that are foreign keys referencing Key-
Val in R. These attributes specify the KeyVals of the parents of a tuple, if the tuple 
has been created by resolution, and are both null otherwise  

Let H be a relation schema, with instance h, which represents the history of changes 
to attribute values due to resolutions and updates. H has the following attributes: 

− SequenceNum, a monotonically increasing, integer-valued candidate key for H 
− KeyValue, an integer-valued foreign key referencing R 
− AttrName, an attribute with domain {Attr1, Attr2, … AttrN} (attributes in R) 
− AttrVal, the value given attribute AttrName in the row in r with key KeyVal 
− ParentID, a foreign key referencing R, though it may also take on the value {null} 
− Comment, a string 

As an example of resolution using R and H, suppose we define R to be {KeyVal, 
Name, EyeColor, ShoeSize, Visible, Parent1, Parent2} and construct r initially as  

 

{1,  Bob,  blue,  12,  True,  null,  null} 
{2,  Robert,  gray,  11,  True,  null,  null} 
{3,  Sally,  brown,  6,  True,  null,  null} 
 

Suppose we then decide that Bob and Robert are really the same person who prefers 
to be called Bob, but whose eyes are actually gray and who wears size 11 shoes. We 
would then update r to produce a relation r’ with schema R as follows: 

 

{1,  Bob,  blue,  12,  False,  null,  null} 
{2,  Robert,  gray,  11,  False,  null,  null} 
{3,  Sally,  brown,  6,  True,  null,  null} 
{4,  Bob,  gray,  11,  True,  1,  2} 
 

To represent the resolution decision, we record these changes in h as follows: 
 

{1, 4,  Name,   Bob,  1,  “Bob = Robert, prefers Bob”} 
{2, 4,  EyeColor,  gray,  2,  “Verified Bob’s eyes are gray”} 
{3, 4,  ShoeSize,  11, 2,  “Bob reports shoes are size 11, not 12”} 

 

For a single resolution, these additions to h record the choice vector, indicating the 
parent from which each resolved attribute in the child is selected. In addition, h can be 
seen as a change log, and may be used in reverse sequence in an “undo” script. 

We begin formalizing the CHIME model by defining a few key concepts. A valid 
relation r with schema R consists of a set of tuples, each of which represents an entity 
of interest. Tuples may be either unresolved, or resolved. An unresolved tuple is one 
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that has been added to r directly to represent an entity. A resolved tuple is one that has 
been created by merging two other tuples as described above. A valid relation has 
these properties: 

− If r contains a tuple t1 in which Parent1 and Parent 2 are non-null (that is, t1 is a re-
solved tuple), the tuples in r with KeyVal equal to the values of Parent1 and Parent2 
in t1 must have their Visible flag set to False: that is, both parents of a resolved tu-
ple are always non-Visible. 

− If r contains resolved tuples, then the attribute values for each user-visible attribute 
in all such tuples must be equal to the value of the same attribute in one or the 
other parent, unless some later update changes an attribute value. 

− Both Parent1 and Parent2 must be either non-null and distinct, or null, in each tuple in 
r. That is, tuples have either no parents (i.e., are unresolved) or two distinct parents. 

− The active domain of Parent1 and Parent2 does not include the KeyVal of the tuple 
in which they appear. That is, no tuple may be its own parent. 

Let r be an instance of R such that two visible user-specified tuples, t1 and t2, in r are 
to be resolved into a single visible tuple in r’ in an operation we call entity resolution. 
Suppose that k1 and k2 are the Keyval values for t1 and t2, respectively. We define t3 as 
the result of a Cartesian product of tuples t1 and t2 with temporary schema R’ = {Key-
val1 = k1, Keyval2= k2, Attr11, Attr12, …Attrn1, Attrn2}, which is then reduced to 
schema R using the projection operator that returns one value from each parental pair 
in R’ according to the user-supplied choice vector. The Parent attributes of t3 are then 
filled in with the Keyvals of t1 and t2. The new instance r’ contains: 

− all tuples originally in r but not including t1 and t2 
− two new tuples identical to t1 and t2, but with the Visible attribute set to False 
− a new tuple t3, which has a new key, Visible = True, Parent1 and Parent2 set to the 

keys of t1 and t2, respectively, and one value for each attribute Attr1…AttrN, se-
lected by the user (as indicated in the choice vector) from the matching attributes in 
t1 and t2.  

In relational algebra, we describe the entity resolution operation as shown in Figure 1. 
Values k1 and k2 above are user-specified. That is, the user selects the two tuples in r 
to be resolved. The underlined projection predicate “choices” in the final union term 
above represents the user’s preferences for attribute values for the resolved entity. We 
use the drop projection operator from the extended relational algebra proposed by 
Wyss and Robertson [15], which we denote Ц. This operator has the semantics of speci-
fying which attributes to eliminate during a projection, rather than which to retain. 

We define the attributes of R as Rinternal ∪ Rexternal, where Rinternal = {KeyVal, Visi-
ble, Parent1, Parent2} and Rexternal = {Attr1, Attr2, … Attrn}. 
Rinternal is the set of attributes in R that represent internal state for record-keeping, 
while Rexternal is the set of user-visible attributes that describe the entities in r. We de-
note the schema Rcart, that is, the schema of the Cartesian product (σKeyval=k1 r × σKey-

val=k2 r) after removal of Rinternal as  
 

Rcart = {k1.Attr1, k1.Attr2, …k1.Attrn, k2.Attr1, k2.Attr2, …k2.Attrn}. 
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rí = r
∪
({ Visible (σKeyval=k1 r)  × {Visible = False})
∪
({ Visible (σKeyval=k2 r) } × {Visib le = False})
- σKeyval=k1 r
- σKeyval=k2 r
∪
(πchoices (σKeyval=k1 r × σKeyval=k2 r) ×

{Keyval = <new integer>, Visible = True, Parent1 =k1, Parent2 =k2} )

Original relation

One parent, now 
marked non-visible

Other parent, now 
marked non-visible

Original visible 
parents removed

New child tuple

r’  
∪
({ Visible (σKeyval=k1 r)  × {Visible = False})
∪
({ Visible (σKeyval=k2 r) } × {Visib le = False})
- σKeyval=k1 r
- σKeyval=k2 r
∪
(πchoices (σKeyval=k1 r × σKeyval=k2 r) ×

{Keyval = <new integer>, Visible = True, Parent1 =k1, Parent2 =k2} )

Original relation

One parent, now 
marked non-visible

Other parent, now 
marked non-visible

Original visible 
parents removed

New child tuple

 

Fig. 1. Definition of Entity Resolution 

Rcart is a schema that includes all of the external attributes from both entities being 
resolved. We define choices as a set of attribute names, such that choices = {xi | xi = 
k1.Attri or xi = k2.Attri for i = 1..n}, that is, there must be exactly one attribute name 
specified in choices from each pair of attribute names corresponding to the same at-
tribute in Parent1 and Parent2. 

As we construct t3 from the list of attributes available in t1 and t2, we also construct 
additions to h. Recall that h has schema {SequenceNum, Keyval, AttrName, AttrVal, 
ParentID, Comment}. For each attribute ai in choices, we add a new tuple to h, with 

 

− a monotonically increasing value for SequenceNum 
− the candidate key of the newly created tuple in r’ 
− the name of the attribute being specified 
− the value assigned to that attribute in the new tuple 
− the Keyval of the parent tuple from which this value was taken 
− a comment string where the user describes the reason for this choice 

 

In relational algebra, we describe changes to h as shown in Figure 2. 
We denote the entity resolution of two tuples t1 and t2 in r, resulting in t3 in r’ as 

Ρ1,2. By this definition, any legal entity resolution results in a valid relation. 
 

Entity de-resolution is the process of reversing an earlier entity resolution decision. 
This implies removing the selected, resolved entity from an instance r’, and  
re-instantiating the two parent tuples of the entity by making them both visible again. 

Let r’ be an instance of R such that two user-specified tuples t1 and t2 in a prior in-
stance r were resolved into a single tuple t3 in r’. Suppose that k3 is the value of Key-
val for t3. Note that by the definition of entity resolution given above, the tuple with 
candidate key k3 has the Parent1 attribute set to t1 and Parent2 set to t2. Also, note that 
if the Parent attributes are null, it indicates that the selected tuple has not been  
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h’ = h
∪
{SequenceNum = <next sequential integer available>,
t3.Keyval,
Attrm,
t3.Attrm,
t1.Keyval or t2.Keyval, as specified by the user,
user-supplied comment text}

Original history

Candidate key for entry

Foreign key to child tuple in r

Attribute name and value

Identity of parent sourcing the value

h’ = h
∪
{SequenceNum = <next sequential integer available>,
t3.Keyval,
Attrm,
t3.Attrm,
t1.Keyval or t2.Keyval, as specified by the user,
user-supplied comment text}

Original history

Candidate key for entry

Foreign key to child tuple in r

Attribute name and value

Identity of parent sourcing the value
 

Fig. 2. Additions to h due to entity resolution in r. One tuple is added to h for each user-visible 
attribute ai in R, i=1…n. 

resolved from others in the relation, so no de-resolution is possible. When we de-
resolve a selected resolved tuple in r’, we create a new instance r, which contains all 
tuples originally in r’ unrelated to the de-resolution of t3, and two new tuples identical 
to t1 and t2 (the non-visible parent tuples of t3), but with the Visible attribute set to 
True. The new instance r has had removed from it the tuple t3 and the two non-visible 
tuples t1 and t2. 

In relational algebra, we describe entity de-resolution effects on r as shown in  
Figure 3. 

 

r = r’
∪
({ЦVisible (σKeyval=t3.Parent1 r’) }× {Visib le = True})
∪
({ЦVisible (σKeyval=t3.Parent2 r’) }× {Visib le = True})
- σKeyval=t3.Parent1 r’
- σKeyval=t3.Parent2 r’
- σKeyval=t3.Keyval r’

Original re lation after resolution

One parent, now 
marked v isible

Other parent, now 
marked v isible

Child and non-visible
parents removed

r = r’
∪
({ЦVisible (σKeyval=t3.Parent1 r’) }× {Visib le = True})
∪
({ЦVisible (σKeyval=t3.Parent2 r’) }× {Visib le = True})
- σKeyval=t3.Parent1 r’
- σKeyval=t3.Parent2 r’
- σKeyval=t3.Keyval r’

Original re lation after resolution

One parent, now 
marked v isible

Other parent, now 
marked v isible

Child and non-visible
parents removed

 

Fig. 3. Definition of Entity De-resolution 

This new relation r contains exactly the same tuples as the original (pre-resolution) 
r, so de-resolution is the functional inverse of entity resolution as defined above. 

As we de-resolve t3 into t1 and t2, we also modify h by removing all tuples added to 
h when the resolution Ρ1,2 was performed. In relational algebra,  

 

h = h’ - σKeyval=t3 h’ 
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We choose here to remove such tuples, retaining only “good” decisions in our his-
tory table. We could equally well choose to retain the history of “poor” decisions, and 
the history of un-doing them, perhaps in another relation, or in the history table h, 
flagged with a new attribute. We denote de-resolution of a child t3 into t1 and t2, and 
associated changes to h, as ∆3. 

An update is a change to the value of an external attribute in a user-specified tuple 
in r. Updates may be made to either unresolved or resolved tuples, so long as they are 
visible. The latter we term post-resolution updates. Functionally, both kinds of up-
dates are equivalent. As an  example, suppose we have relations r’ and h’ from our 
previous example: 

 

r’ = {{1,  Bob,  blue,  12,  False,  null,  null}, 
              {2,  Robert,  gray,  11,  False,  null, null}, 
              {3,  Sally,  brown,  6,  True,  null,  null}, 
              {4,  Bob,  gray,  11,  True,  1,  2}} 

 
h’ = {{1,  4, Name, Bob,  1,  “Bob = Robert, prefers Bob”}, 

              {2,  4, EyeColor,  gray,  2,  “Verified Bob’s eyes are gray”}, 
              {3,  4, ShoeSize,  11,  2,  “Bob reports shoes are size 
11”}} 

 

Now suppose that the user finds that Bob’s shoe size is actually 9 rather than 11, 
and makes the appropriate update. That is, the user changes Bob’s shoe size from the 
originally resolved value of 11 to the value 9.  Then we have a new table 

 r’’ = {{1,  Bob,  blue,  12,  False,  null,  null}, 
               {2,  Robert,  gray,  11,  False,  null,  null}, 
               {3,  Sally,  brown,  6,  True,  null,  null}, 
               {4,  Bob,  gray,  9,  True,  1,  2}} 

and we record this update in our history table as 

h’’ = {{1, 4, Name,   Bob,  1,   “Bob = Robert, prefers Bob”}, 
           {2, 4,  EyeColor,  gray,  2,   “Verified Bob’s eyes are gray”}, 
           {3, 4,  ShoeSize,  11,  2,    “Bob reports shoes are size 11”}, 
           {4, 4,  ShoeSize,  9,  null, “Fixed Bob’s shoe size!!!”} 

In relational algebra, we define updates to the relation r’ as: 
 

r’’ = r’ 
        ∪ (ЦAttrM (σKeyval=K r’) × {AttrM = NewValue}) - σKeyval=K r’ 

 

where the Keyval K, the attribute name “AttrM”, and the value ”NewVal” are sup-
plied by the user. Subsequent updates may revise or undo the effect of earlier updates. 
A later update that undoes a prior update, we call a retraction. We denote an update to 
tuple t1 in r, along with the associated changes to h, as Θ1, attrname, value. 

De-resolution of a resolved entity might be interpreted in several ways. The simple 
approach, discussed above, is to assume that all decisions made with respect to the 
resolved entity, including both the original resolution decision and all subsequent  
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updates, should simply be discarded. However, this approach ignores any updates 
made after resolution. For example, consider once again the relation r’’: 

 

r’’ = {{1,  Bob,  blue,  12,  False,  null,  null}, 
               {2,  Robert,  gray,  11,  False,  null,  null}, 
               {3, Sally,  brown,  6,  True,  null,  null}, 
               {4,  Bob,  gray,  9,  True,  1,  2}} 

 

Suppose that after changing Bob’s shoe size to 9 from 11, as shown in the last  
tuple of h’’, we decide that Robert and Bob are really not the same person after all. 
Because of this, we wish to remove the tuple with KeyVal 4 from r’’ and restore its 
parents. However, suppose the change in shoe size was correct: 11 really should be 9 
for one of the parents. We would like to avoid requiring tedious modification of the 
original relation r to represent this correctly. Upon de-resolution, we should back-
propagate the value 9 into the attribute that currently has the value 11, because the 
shoe size of Robert (11) was preferred when we resolved Bob and Robert. After back-
propagation of updates, we would like the final state of the relation to be 

 

r = {{1,  Bob,  blue,  12,  True,  null,  null}, 
            {2,  Robert,  gray,  9,  True,  null,  null}, 
            {3, Sally,  brown,  6,  True,  null,  null}} 

 

To perform de-resolution in the presence of later updates to a resolved tuple, we 
first perform simple de-resolution. Next, we modify the resulting relation by applica-
tion of the post-resolution updates to the appropriate parent attributes. We implement 
de-resolution in relational algebra as follows. Suppose we wish to de-resolve a re-
solved tuple t3 with candidate key k3. First, we join history table rows representing the 
choice vector for t3 with the rows representing any post-resolution updates for  
attributes in t3.  

h1 = σKeyval=k3, Parent ≠null h  KeyVal, attrName σParent =null h 
 

The important attributes in each result row in h1 are 

− the name of the attribute updated (attrName) 
− the order in which each update was done (right.SequenceNum) 
− the value assigned by the update (right.attrVal) 
− the key of the parent that should receive the back-propagated value (left.Parent) 
 

Next, we reduce this result to retain only these important attributes:  
h2 = πright.SequenceNum, attrName, left.Parent, right.attrVal(h1) 

 

At this point, we have a set of all attributes that have been changed in t3, the identi-
ties of the tuples into which these changes should be back-propagated1, the values to 
back-propagate, and the order in which these updates should be applied. However, 
only the last update for each attribute in the selected tuple matters, because all others 
were overwritten by their successors. This suggests the next step: group by the attribute 

                                                           
1 For clarity of presentation, we assume here that the correct target tuple for back-propagation 

of an update is the parent tuple from which the original attribute value in the child was taken. 
An equally valid choice would be to choose the other parent. In general, this selection should 
be made with user input. 
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name that was changed, and find the most recent update in each group. We apply the 
group-by operator γ and the aggregation function max() to achieve this step. We sim-
plify the expression by defining max to return the tuple containing the maximum value 
of the specified attribute rather than simply the value itself: 

h3 = γattrName,  max(Sequencenum) h2 
 

Next, we can discard the ordering information: 
h4 = πattrName, Parent, attrVal h3 
 

h4 consists of at most a single tuple per attribute in Rexternal because we selected 
changes for only a single resolved tuple when forming h1, and in h3 we filtered those 
down to only the most recent updates. We transform the resulting set of updates by 
moving the value of attrName attributes to become the names of the attrVal attributes 
via the pivot operator proposed by Wyss and Robertson [15]: 

       h5 = PIVOTattrVal attrName h4 

h5 contains at most two tuples, one for each parent, with values for each of the at-
tributes to be back-propagated into that parent, and null for all other attribute values in 
h4.  

Next, we join r with h5 on r.KeyVal = h5.Parent. We define this join, denoted ] , 
to preserve all attributes from the original parent tuple in r, except that we replace 
those with matching non-null attributes in h5 with the values from h5. For this pur-
pose, we define a variant of equi-join that has the following semantics. In addition to 
the usual join behavior, the join retains attributes with their corresponding attribute 
values from only the left relation whenever the attribute is null  in the right relation, 
and retains attributes with their corresponding attribute values from only the right 
relation whenever the right relation has a non-null value. We then project away the 
name of the parent, to yield the new version of the parent tuple with schema identical 
to R. We denote this step 

rtemp = Цh5.Parent (r ] KeyVal=Parent h5) 

Finally, we union this with r and then remove the old parent tuples 

r’ = (r ∪ rtemp) – r  keyval=parent h5 
 

We now describe the changes to h required for this operation. As with simple de-
resolution, all entries in h resulting from the resolution operation must be removed. 
We must also remove all entries in h that describe post-resolution updates to the re-
solved tuple. We describe the removal of all these updates from h algebraically as 

 

     h = h’ - σKeyval=t3 h’ 
 

We denote de-resolution of a child t3 with key k3, with back-propagation of later 
updates into its parents t1 and t2, along with associated changes to h, as ∆b

k3. The re-
mainder of this paper considers de-resolution as defined this way. 

A legal sequence of resolutions, updates, and de-resolutions has two requirements. 
First, all tuples in r referred to as targets of updates and/or sources of resolution and 
de-resolution have not been made non-visible by a prior operation in the sequence. 
Second, all changes to r result in a valid relation at each step (including the end of the 
sequence). 
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Two entity resolutions are independent if the tuples they operate on are disjoint. 
That is, neither operation relies on the other for creation of a tuple involved in its op-
eration, and the two operations do not specify the same tuple as a parent. Two update 
operations are independent if they refer to either different tuples, or different attrib-
utes, or both. A resolution and an update are independent if the parents and child of 
the resolution are disjoint from the target tuple of the update. 

3   Lemmas and Theorems 

As users integrate data for everyday tasks, their understanding of the data set evolves. 
Decisions made at one point often must be reversed later as a user’s understanding 
improves, as in the example of Robert and Bob in Section 2. Unfortunately, users are 
likely to learn of their errors a long time (during which they made many other deci-
sions) after committing them. It is undesirable for a tool to insist that users undo all 
intervening decisions, remove the erroneous decision, and then redo everything. We 
prefer to define an integration tool that provides convenient correction of such errors. 
In order to deliver a useful tool, we must first know whether such convenience can be 
concomitant with correct results. In this section, we show that a user may undo an 
earlier resolution or update regardless of intervening operations, providing that the 
operations form a legal sequence as defined above. Figure 4 summarizes the reason-
ing presented in this section. 
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Fig. 4. Reasoning Diagram for Definitions, Propositions, and Theorems 

Lemma 1: Composition of resolutions in a legal sequence yields a valid relation 

Suppose we have two entity resolutions Ρ1,2 yielding t3 and Ρ4,5 yielding t6 for distinct 
t1, t2, t4, and t5 in r. Then either the two resolutions are independent, or they are not. If 
they are independent, then applying Ρ1,2 will result in a valid r’ by definition, and sub-
sequently applying Ρ4,5 to the valid relation r’, such that the two operations form a 
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legal sequence, will also result in a valid relation, because t4 and t5 are distinct from t1 
and t2, the only tuples made ineligible for further resolution in r’. If the two  
resolutions Ρ1,2 and Ρ4,5 are not independent, then we have two possibilities: either 
one of t1 and t2 must be the same as t4 or t5, which violates our definition of resolution 
because both t1 and t2 are already parents in r’; or t3 must be the same as t4 or t5. In the 
latter case, composition yields a valid relation per our definition. 

Lemma 2: Composition of two independent resolution operations is commutative 

Suppose r = {t1, t2, t4, t5} and all of t1, t2, t4, and t5 have Visible = true. That is, they all 
meet the requirements for use as source tuples in entity resolution operations. Also 
suppose that Ρ1,2 yielding t3 and Ρ4,5 yielding t6 are independent resolution operations. 
From our definition of entity resolution, we know that Ρ1,2 results in the addition of t3 
to r, and the change of t1 and t2 to be non-visible, such that they cannot participate in 
future resolution. Similarly, we know that Ρ4,5 results in the addition of t6 to r, and the 
change of t4 and t5 to be non-visible. If we perform Ρ1,2 first and Ρ4,5 second, we have 
a valid relation (from Lemma 1) r’ = {t1, t2, t3, t4, t5, t6} such that t1, t2, t4, and t5 are 
non-visible and {t3, t6} are visible. If we perform these resolutions in the opposite 
order, we have a valid relation r’’ = {t1, t2, t3, t4, t5, t6} such that t1, t2, t4, and t5 are non-
visible and {t3, t6} are visible. Because r’ = r’’, the two operations are commutative. 

Lemma 3: Entity de-resolution of a child results in a valid relation if the most 
recent resolution on a relation is the one being de-resolved, and there are no 
intervening updates. 

Suppose we have a relation r’ which resulted from the resolution of two tuples in a 
valid relation r, where t1 is the tuple created by the resolution resulting in r’, and Par-
ent1 and Parent2 are the tuples that were resolved to create t1. Then immediately after 
the resolution, r’ is valid, and contains the new tuple t1 marked visible, and the tuples 
Parent1 and Parent2, marked not visible. Now suppose we de-resolve t1, resulting in 
relation r’’. Between the resolution and de-resolution, we assume that no other resolu-
tions occur. This means that the only possible changes to r’ between the pair of opera-
tions is addition of new tuples which by definition have both parent fields set to null. 
The de-resolution of t1, resulting in r’’, eliminates t1 and restores Parent1 and Parent2 
to Visible, but affects no other tuples and does not affect any fields except the Visible 
field in Parent1 and Parent2. Then we see that upon de-resolution, r must be valid, 
because the only resolved tuples in r’’ are those that existed in the original r, which by 
definition meet the first and second stipulations of a valid relation since r was valid.  

Lemma 4: Entity de-resolution of a child is the inverse operation of the entity 
resolution of its parents, provided that it was the most recent resolution and that 
there were no intervening updates 
 

Our definition of entity resolution tells us that  
 

r’ = r 
       ∪  ({ЦVisible (σKeyval=k1 r) } × {Visible = False}) 
       ∪  ({ЦVisible  (σKeyval=k2 r) }  × {Visible = False}) 
        -   σKeyval=k1 r 
        -   σKeyval=k2 r 
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       ∪ (πchoices (σKeyval=k1 r × σKeyval=k2 r) 
            × {Keyval = <integer>, Visible = True, Parent1 = k1, Parent2 =k2} ) 
 

Substituting for r using our definition of de-resolution (shown in italics below), we 
have 

 

r’ =  (r’ 
        ∪ ({ЦVisible  (σKeyval=t3.Parent1 r’) }  ×  {Visible = True}) 
        ∪ ({ЦVisible  (σKeyval=t3.Parent2 r’) }  ×  {Visible = True}) 
          - σKeyval=t3.Parent1 r’ 
          - σKeyval=t3.Parent2 r’ 
          - σKeyval=t3.Keyval r’ ) 
∪  ({ЦVisible (σKeyval=k1 r) }  ×  {Visible = False}) 
∪  ({ЦVisible (σKeyval=k2 r) }  ×  {Visible = False}) 
 -   σKeyval=k1 r 
 -   σKeyval=k2 r 
∪  (πchoices (σKeyval=k1 r × σKeyval=k2 r) 
            × {Keyval = <new integer>, Visible = True,  

  Parent1 = πKeyval (σKeyval=k1 r), Parent2 =πKeyval(σKeyval=k2 r)}) 
 

Note that σKeyval=t3.Keyval r’ shown above is simply the newly resolved tuple we added 
to r, because t3.Keyval is a candidate key, and because the tuple with Keyval of 
t3.Keyval is guaranteed to be present as a result of the original entity resolution.  The 
tuple with t3.Keyval as key is: 

 

  (πchoices (σKeyval=k1 r × σKeyval=k2 r) 
         ×  

    {Keyval = <integer>, Visible = True, Parent1 = πKeyval (σKeyval=k1 r),  
      Parent2 =πKeyval(σKeyval=k2 r)} ) 
 

This allows us to cancel2 these two terms, leaving us with 
 

(r’ 
       ∪ ({ЦVisible (σKeyval=t3.Parent1 r’) } × {Visible = True}) 
       ∪ ({ЦVisible (σKeyval=t3.Parent2 r’) } × {Visible = True}) 
        - σKeyval=t3.Parent1 r’ 
        - σKeyval=t3.Parent2 r’) 

          ∪ ({ЦVisible (σKeyval=k1 r) } ×  {Visible = False}) 
               ∪ ({ЦVisible (σKeyval=k2 r) } × {Visible = False}) 
               - σKeyval=k1 r 
               - σKeyval=k2 r 
 

Next, note that   
 

({ЦVisible (σKeyval=t3.Parent1 r’) }  ×  {Visible = True})  

is a tuple in r’ with the key of one parent of t3, and visible set to True. Also note that  
                                                           
2 We assume here that the Keyval shown here (as being generated at the time the resolution was 

performed) matches the Keyval of the tuple chosen for deresolution. 
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({ЦVisible (σKeyval=t3.Parent2 r’) }  ×  {Visible = True}) 
 

is a tuple in r’ with candidate key of the other parent of t3, also with the visible flag 
set to True. This pair is identical to the tuple pair {σKeyval=k1 r, σKeyval=k2 r}, the original 
parent tuples of t3. As a result, we can cancel these 4 terms, leaving us with 

 

(r’ 
       - σKeyval=t3.Parent1 r’ 
       - σKeyval=t3.Parent2 r’) 

         ∪ ({ЦVisible (σKeyval=k1 r) } × {Visible = False}) 
              ∪ ({ЦVisible (σKeyval=k2 r) } × {Visible = False}) 

 

Now note that σKeyval=t3.Parent1 r’ results in a single tuple, one of the parents of t3, with 
the Visible flag set to False as a result of the original resolution step, and σKey-

val=t3.Parent2 r’ is the other parent. These are the same as the pair 

           ({ЦVisible (σKeyval=k1 r) } × {Visible = False}) 
       ∪ ({ЦVisible (σKeyval=k2 r) } × {Visible = False}) 

 

allowing us to cancel these terms. This leaves us with simply r’ = r’, proving that de-
resolution is the inverse of resolution. 

Lemma 5: De-resolution with update back-propagation is equivalent to modify-
ing the parents in the original relation 

Lemma 4 shows that entity resolution followed immediately by a matching de-
resolution effectively restores the relation to its state prior to the resolution. We now 
show that we can achieve the desired behavior of back-propagation during de-
resolution by showing that intervening updates are pushed back into the appropriate 
parents.  

Recall from our definition that the choices vector from a resolution is used during 
the corresponding de-resolution to specify which parent is populated with values from 
post-resolution updates. That is, during de-resolution, each post-resolution update is 
performed on one parent or the other, depending on the choices vector. The set of 
tuple selections expressed by the user in choices is the same set that the user would 
express if making updates directly to the parent tuples if no resolution had been done. 
As a result, back-propagation updates the same attributes in the same tuples to the 
same values that would be specified had the user made direct updates, using the same 
choices, without the intervening resolution. 

Lemma 6: Composition of two independent update operations is commutative 

Two independent updates must either target different tuples in r, or different attributes 
in R, or both. Because of this, two independent updates can always be applied in ei-
ther order, resulting in the same relation. As a result, the two operations are commutative. 

Lemma 7: Composition of a resolution and an independent update in a legal 
sequence is commutative 

If an entity resolution and an update are independent and form a legal sequence, then 
either the resolution follows the update, but does not involve the updated tuple, or the 
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update follows the resolution, but does not target any of the tuples involved in the 
resolution. In either case, the result is identical, so the operations are commutative. 

Theorem 1: Any legal sequence of entity resolutions and updates ending in a de-
resolution is equivalent to the original series of resolutions and updates with the 
de-resolved resolution left out, but with any post-resolution updates to the de-
resolved entity back-propagated, i.e., applied to the correct parent tuple 
according to the choices vector used during the original resolution 

If the sequence is legal, then the terminal de-resolution operation must apply to some 
resolution operation that is independent of any other intervening resolutions between 
the two. Because we know that independent resolutions commute (Lemma 2), and 
that independent updates and resolutions commute (Lemma 7), and that independent 
updates commute (Lemma 6), we commute these operations until the resolution of 
interest is only separated from its de-resolution by a sequence of dependent updates. 
In effect, we  “push” the affected resolution down towards the end of the sequence, 
pushing ahead of it any dependent updates, until the end of the sequence consists of 
the resolution, any updates to the resolved tuple, and the de-resolution. Because up-
dates affect only user-visible attributes, and because entity de-resolution depends only 
on internal attributes, intervening updates between the resolution – de-resolution pair 
do not prevent correct de-resolution, though they will affect which values are back-
propagated to parents during de-resolution. We then apply Lemma 5, obtaining a rela-
tion that has all post-resolution updates applied (back-propagated) to the correct par-
ent, which is equivalent to applying the desired updates to the parent in the original 
relation. 

Theorem 2: Any legal sequence of entity resolutions, updates, de-resolutions, and 
retractions of updates is equivalent to the original sequence of resolutions and 
updates with the de-resolved and retracted operations left out, but with post-
resolution updates to the de-resolved entities applied to the correct parents, 
according to the choices vector used during resolution. In practical terms, the 
final result of a set of operations and corrections is the same as the original set 
without the errors, but with updates back-propagated appropriately. 

Suppose we have a list of resolutions, updates, and de-resolutions that we wish to 
apply to relation r, with associated effects on relation h. We begin by applying the 
first of these, generating a new relation pair r’ and h’. We continue to apply these, one 
at a time, until we encounter a de-resolution. Then we apply Theorem 1 to return the 
sequence to a sequence of resolutions and updates without the undone resolution, but 
with all updates applied to the right parents. Then we proceed by applying subsequent 
operations to this valid relation from our legal sequence, until encountering another 
de-resolution. Theorem 1 can then be applied again, and so on. We repeat this incre-
mental application of Theorem 1 as often as required, each time obtaining a correct 
intermediate result, eventually yielding a correct final result.  

Retractions of updates in the sequence are simply updates that happen to supercede 
a previous update. Because of this, the above reasoning extends to cover legal se-
quences of resolutions, de-resolutions, updates, and retractions. 
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4   Related Work 

Research that we know of in entity resolution (also called record linkage [7] and de-
duplication [8]) is largely focused on identifying entity matches, rather than on how 
merges are done and decision histories retained and traversed. As early as 1969 [3], 
work was published on statistical methods for determining entity matches. More re-
cently, machine learning and other automated approaches have been explored [9, 10, 
11, 12]. Garcia-Molina [13] provides a comprehensive overview of this area. Other 
recent approaches involve gathering semantic information from users or user datas-
paces. MOBS [4] seeks to retrieve information about entities from diverse sources, 
given initial seed data. It depends on explicit contributions to its mapping database by 
a community of users. Our long-term vision is similar to MOBS, but our approach 
emphasizes gathering metadata behind the scenes as users gather data for their own 
purposes. In addition, our work emphasizes post-integration tasks like entity resolu-
tion, which is beyond the scope of MOBS. SEMEX [5] uses a pre-defined but exten-
sible ontology to construct an entity-centric, logical view of a user’s desktop by  
constructing a database of objects and associations between them. In this way, SE-
MEX provides access to data stored in multiple applications without imposing a data 
organization that is application-centric. The SEMEX approach differs from ours in 
that SEMEX takes in a user’s entire personal information space to identify entities 
and associated data, while we focus on user selections and actions to derive schema 
and entity evolution. 

Garcia-Molina and the Swoosh team [6] distinguish two entity resolution functions: 
match and merge. Match is a black box representing the disambiguation methods dis-
cussed above. The merge function has to do with modifying a relation to take into ac-
count an identified match. The authors provide a conceptual data model, describe the 
merge function formally, and prove several properties of compositions of merges. Our 
entity resolution function differs from Swoosh in that Swoosh assumes a simple domi-
nation model, while our model accounts for a true merge of characteristics from both 
entities. Also, Swoosh retains no parentage or history: a dominated entity is immedi-
ately removed from the relation and no history is kept. Our model retains both parent 
entities of the merge, as well as a history of which attribute values were chosen for 
expression in the child. Swoosh does not address de-resolution. Our model fully sup-
ports reversal of resolution decisions. Finally, Swoosh considers only resolution, while 
we consider interactions between resolutions, de-resolutions, and updates. 

5   Conclusions and Future Work 

We observed previously [1] that everyday data integration by users who are not data 
management experts is ubiquitous. In this paper, we have identified a set of integra-
tion decisions and associated user actions common to these tasks. We presented a 
formalism, and used it to show that the key post-integration actions of entity resolu-
tion, updates, retractions, and de-resolutions behave predictably and intuitively.  

We have implemented an emulator for CHIME and a data integration application 
based on the CHIME model. We wrote the emulator in Haskell, a polymorphically 
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typed, pure functional language. Haskell’s polymorphism makes abstractions easy, so 
that we could focus on the integration functions rather than the implementation of the 
emulator. The ease of recursion in functional languages also made data manipulation 
in the emulator easy. We used the emulator to develop a model of entity and attribute 
resolution and de-resolution, and to explore composition of these functions. We wrote 
our prototype application, also called CHIME, in J# as a Windows application. With 
CHIME and support from the SPARCE middleware package [2], users can gather 
data from a variety of source documents: Excel spreadsheets, Word documents, web 
browsers, and other applications.  

We have more formal work to do. For example, attribute resolution and de-
resolution must be added to our framework. Once our formal development is complete, 
we will pursue a more complete application suite. Then we can explore the next step: 
exploiting the captured end-user integration information to aid large-scale information 
integration.  
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1 Departamento de Sistemas Informáticos y Computación,
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Abstract. The logic programming language Datalog has been exten-
sively researched as a query language for deductive databases. Although
similar to Prolog, the Datalog operational mechanisms are more intricate,
leading to computations quite hard to debug by traditional approaches.
In this paper, we present a theoretical framework for debugging Datalog
programs based on the ideas of declarative debugging. In our setting,
a debugging session starts when the user detects an unexpected answer
for some query, and ends with the debugger pointing to either an erro-
neous predicate or to a set of mutually recursive predicates as the cause
of the unexpected answer. Instead of representing the computations by
means of trees, as usual in declarative debugging, we propose graphs as
a more convenient structure in the case of Datalog, proving formally the
soundness and completeness of the debugging technique. We also present
a debugging tool implemented in the publicly available deductive data-
base system DES following this theoretical framework.

1 Introduction

Deductive databases rely on logic programming based query languages. Although
not very well-known out of the academic institutions, some of their concepts are
used in today relational databases to support advanced features of more recent
SQL standards, and even implemented in major systems (e.g., the linear re-
cursion provided in IBM’s DB2 following the SQL-99 standard). A successful
language for deductive databases has been Datalog [1], which allows users writ-
ing more expressive queries than relational databases. Relations and queries in
Datalog are considered from a model-theoretic point of view, that is, thinking
of relations as sets, and the language itself as a tool for manipulating sets and
obtaining answer sets.

Raising the abstraction level generally implies a more complex computation
mechanism acting as a black-box hidden from the user. Although this leads
to more expressive programs, it also makes query debugging a very difficult
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process. An operational semantics oriented debugger is not helpful in this con-
text, since the underlying computational mechanism is not directly related to the
model-theoretic approach, but to implementation techniques such as magic sets
[2] or tabling [3]. The few existing proposals for debugging specifically Datalog
programs are usually based on “imperative” debugging, that try to follow the
computation model to find bugs. These proposals are mainly based on forests of
proof trees [4,5,6], which makes debugging a trace based task not so amenable to
users. The first work related to the declarative debugging of Datalog programs
is due to [7], but a variant of SLD resolution is used in order to look for pro-
gram errors, imposing to traverse at least as many trees as particular answers
are obtained for any query.

In the more general setting of answer set programming [8], there have been
several proposals for diagnosing program errors in the last few years. In [9] a
technique for detecting conflict sets is proposed. The paper explains how this
approach can be used for detecting missing answers. Our proposal is limited to a
more particular type of programs, namely stratified programs, but it can be ap-
plied for diagnosing not only missing but also wrong answers. In [10] the authors
propose a technique that transforms programs into other programs with an-
swer sets including debugging-relevant information about the original programs.
This approach can be seen as a different, complementary view of the debugging
technique described here.

In [11] we proposed a novel way of applying declarative debugging (also called
algorithmic debugging, a term first coined in the logic programming field by E.H.
Shapiro [12]), to Datalog programs. In that work, we introduced the notion of
computation graphs (shortly CGs) as a suitable structure for representing and
debugging Datalog computations. One of the virtues of declarative debugging
is that it allows theoretical reasoning about the adequacy of the proposal. This
paper addresses this task, proving formally the soundness and completeness of
the debugging technique. We also present a prototype based in these ideas and
included as part of a publicly available Datalog system DES [13].

The next section introduces the theoretical background needed for proving the
properties of the debugger. Section 3 presents the concept of computation graph
and proves several properties of CGs, while Section 4 includes the soundness
and completeness results. Section 5 is devoted to discuss some implementation
issues. Finally, Section 6 summarizes the work and presents the conclusions.

2 Datalog Programs

In this section, we introduce the syntax and semantics of Datalog programs and
define the different types of errors that can occur in our setting. Although there
are different proposals for this language, we will restrict our presentation to the
language features included in the system DES [13]. Observe that the setting for
Datalog presented here is a subsumed by the more general framework of Answer
Set Programming [8].
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2.1 Datalog Syntax

We consider (recursive) Datalog programs [14,15], i.e., normal logic programs
without function symbols. In our setting, terms are either variables or constant
symbols and atoms are of the form p(t1, . . . , tn), with p an n-ary predicate symbol
and ti terms for each 1 ≤ i ≤ n. The notation t1, . . . , tn will be usually abbre-
viated as t̄n. A positive literal is an atom, and a negative literal is a negated
atom. A negated atom is syntactically constructed as not(A), where A is an
atom. The atom contained in a literal L will be denoted as atom(L). The set of
variables of any formula F will be denoted as var(F ). A formula F is ground
when var(F ) = ∅.

A rule (or clause in the logic programming context) R has the form p(t̄n) :
− l1, . . . , lm representing the first order logic formula p(t̄n) ← l1 ∧ . . . ∧ lm,
where li are literals for i = 1 . . .m, and m ≥ 0. The left-hand side atom p(t̄n)
will be referred to as the head of R, the right-hand side l1, . . . , ln as the body
of R, and the literals li as subqueries. The variables occurring only in the body
l1 ∧ . . . ∧ lm are assumed to be existentially quantified and the rest universally
quantified. We require that vars(H) ⊆ vars(B) for every program rule H :− B.
A fact is a rule with empty body and ground head. The symbol :− is dropped
in this case. The definition of a relation (or predicate) p in a program P consists
of all the program rules with p in the head. A query (or goal) is a literal.

We consider stratified negation, a form of negation introduced in the context
of deductive databases in [16]. A program P is called stratified if there is a
partition {P1, . . . , Pn} of P s.t. for i = 1 . . . n:

1. If a relation symbol occurs in a positive literal of the body of any rule in Pi

then its definition is contained in ∪j≤iPj .
2. If a relation symbol occurs in a negative literal of the body of any rule in Pi

then its definition is contained in ∪j<iPj .

We call each Pi a stratum. For instance, consider the Datalog program of
Figure 1. We can check that the program is stratified by defining two strata: P1

containing the rules for star, orbits and intermediate, and P2 containing the
rule for planet.

star(sun).
orbits(earth, sun).
orbits(moon, earth).
orbits(X,Y) :− orbits(X,Z), orbits(Z,Y).
planet(X) :− orbits(X,Y), star(Y), not(intermediate(X,Y)).
intermediate(X,Y) :− orbits(X,Y), orbits(Z,Y).

Fig. 1. A (buggy) Datalog Program
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2.2 Program Models

We consider Herbrand interpretations and Herbrand models, i.e., Herbrand inter-
pretations that make every Herbrand instance of the program rules logically true
formulae. An instance of a formula is the result of applying the substitution θ to
a formula F . We use the notation Fθ instead of θ(F ) for representing instances.
The set Subst represents the set of all the possible substitutions. Often, we will
be interested in ground instances of a rule, assuming implicitly that every rule
is renamed with new variables each time it is selected. The composition opera-
tion between substitutions is defined in the usual way and fulfilling the property
(Fσ)θ = F (σ ·θ) for all σ, θ ∈ Subst. Two formulae ϕ,ϕ′ are variants if ϕ = ϕ′θ,
where θ is a renaming, i.e., a bijection among variables. We say that σ ∈ Subst
is an instance of θ ∈ Subst when σ = θµ, with µ some substitution. In this case,
we write σ ≥ θ.

Given a Herbrand interpretation I for a the Datalog program P , we use the
notation I |= F to indicate that the formula F is true in I. The meaning of a
query Q w.r.t. the interpretation I, denoted by QI , is the set of ground instances
Qθ s.t. I |= Qθ. If Q is an atom, then an equivalent definition is QI = {Qθ |
Qθ ∈ I for some θ ∈ Subst}.

In logic programming without negation, the existence of a least Herbrand
model for every program P is ensured, and it can be obtained as the least fixed
point of a closure operator TP , which is defined over any interpretation I as:

A ∈ TP (I) iff for some rule (H :− B) ∈ P, I |= Bθ and A = Hθ

In these conditions, the least Herbrand model is defined as TP ↑ ω(∅), i.e., as
the fixed point obtained when iterating the operator starting at the empty in-
terpretation. In general, however, the existence of the least Herbrand model is
not ensured in programs using negation. Fortunately, due to the use of stratified
programs in Datalog, the existence of a so-called standard model, which we will
represent also asM, is in any case ensured [14]. Given a program P stratified by
the partition {P1, . . . , Pk}, we define the sets M0 = ∅, M1 = TP1 ↑ ω(M0), . . . ,
Mk = TPk

↑ ω(Mk − 1). Then, the standard model of P is defined as M = Mk.
The standard model verifies the following properties (the proofs can be found in
[14]):

Proposition 1. Let P be a program stratified by the partition {P1, . . . , Pk}.
Then:

1. M is a minimal model.
2. M is supported, i.e., for all p(s̄n) ∈ M there exists an associated pro-

gram rule (H :−B) ∈ P and an associated substitution θ ∈ Subst such
that p(s̄n) = Hθ, M |= Bθ and Bθ ground (due to our safety condition,
var(H) ⊆ var(B), which means that Hθ is also ground).

3. Conversely, if there is some (H :−B) ∈ P , θ ∈ Subst s.t. M |= Bθ, then
M |= Hθ.

4. M is independent of the stratification.
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5. The following chain of inclusions holds:
∅ = M0 ⊆ TP1(M0) ⊆ T 2

P1
(M0) ⊆ . . . ⊆M1

M1 ⊆ TP2(M1) ⊆ T 2
P2

(M2) ⊆ . . . ⊆M2

. . .
Mk−1 ⊆ TPk

(Mk−1) ⊆ T 2
Pk

(Mk−1) ⊆ . . . ⊆Mk =M

Since functions are not allowed in Datalog, the standard model is finite and it
can be actually computed. In fact, the deductive database systems such as DES
are implemented to obtain the values QM for every query Q. Thus, QM will
be referred to as the answer to Q. From now on, we assume that the Datalog
system supporting the debugger verifies this condition, which is a reasonable
requirement in the context of Datalog. This is different from the general setting of
logic languages such as Prolog, even if we restrict to the case of Prolog programs
without functions in the signature. For instance, consider the following dummy
program:

p(X) :- q(X). q(X) :- p(X).

The program is valid both in Prolog and in Datalog. However, the goal (resp.
query) p(X) shows the difference between the two settings: In Prolog, it leads to
a non-terminating computation, whereas in Datalog it succeeds with the answer
{}, meaning that no ground instance of p(X) can be deduced from the program.
Our selected system DES computes the answer to a query following a top-down
approach, so that only the relevant information to obtain QM is computed in
order to increase the efficiency of the computation.

The concept of standard model above is generalized by that of stable model
[17], which can be applied also to non-stratified programs. However, in this work
we restrict our semantics to stratified programs because this is a requirement of
several Datalog systems.

2.3 Correct and Incorrect Programs

We use the term intended interpretation, denoted by I, to denote the Herbrand
model the user has in mind for the program. If M = I, we say that the program
is well-defined, and if M 
= I we say that the program is buggy. Declarative
debugging assumes that the user focus on query answers for comparing the
intended interpretation to the standard Herbrand model actually computed.
Thus, we say that QM is an unexpected answer for a query Q if QM 
= QI . An
unexpected answer can be either a wrong answer, when there is some Qθ ∈ QM
s.t. Qθ /∈ QI , or a missing answer, when there is Qθ ∈ QI s.t. Qθ /∈ QM. In
the first case, Qθ is a wrong instance, while in the second one Qθ is a missing
instance. Observe that an unexpected answer can be both missing and wrong at
the same time. The next proposition indicates that an unexpected answer to a
positive query implies an unexpected answer to its negation.

Proposition 2. Let P be a program containing at least one constant, I its in-
tended model and Q a positive query. Then, QM is a missing answer for Q iff
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(¬Q)M is a wrong answer for ¬Q, and QM is a wrong answer for Q iff (¬Q)M
is a missing answer for ¬Q.

Proof. Straightforward from the definition of meaning of a query w.r.t. an in-
terpretation, since QI ∩ (¬Q)I = ∅ in every interpretation I. Then, p(t̄n) /∈ QM
and p(t̄n) ∈ QI , i.e., if p(t̄n) is a missing instance and QM is a missing answer,
iff p(t̄n) ∈ (¬Q)M), p(t̄n) /∈ (¬Q)I , i.e., p(t̄n) is a wrong instance and (¬Q)M is
a wrong answer for ¬Q. Analogous for the other case. �

An unexpected answer indicates that the program is erroneous, and it will be
considered as the initial symptom for a user to start the debugging process.
The two usual causes of errors considered in the declarative debugging of logic
programs are wrong and incomplete relations:

Definition 1 (Wrong Relation). Let P be a Datalog program.We say that p ∈
P is a wrong relation w.r.t. I if there exist a rule variant p(t̄n) :− l1, . . . , lm
in P and a substitution θ such that I |= liθ, i = 1 . . .m and I � p(t̄n)θ.

Definition 2 (Incomplete Relation). Let P be a Datalog program. We say
that p ∈ P is an incomplete relation w.r.t. I if there exists an atom p(s̄n)θ
s.t. I |= p(s̄n)θ and, for each rule variant p(t̄n) :− l1, . . . , lm and substitution
θ′, either p(t̄n)θ′ 
= p(s̄n)θ or I � liθ′ for some li, 1 ≤ i ≤ m.

In Datalog we also need to consider another possible cause of errors, namely the
incomplete set of relations. This concept depends on the auxiliary definition of
uncovered set of atoms.

Definition 3 (Uncovered Set of Atoms). Let P be a Datalog program and
I an intended interpretation for P . Let U be a set of atoms s.t. I |= p(s̄n) for
each p(s̄n) ∈ U . We say that U is an uncovered set of atoms if for every rule
p(t̄n) :− l1, . . . , lm in P and substitution θ s.t.:

– p(t̄n)θ ∈ U ,
– I |= liθ for i = 1 . . .m

there is some ljθ ∈ U , 1 ≤ j ≤ m, with lj a positive literal.

Now, we are ready for defining the third kind of error, which generalizes the idea
of incomplete relation:

Definition 4 (Incomplete Set of Relations). Let P be a Datalog program
and S a set of relations defined in P . We say that S is an incomplete set
of relations in P iff exists an uncovered set of atoms U s.t. for each relation
p ∈ S, p(t̄n) ∈ U for some t1, . . . , tn.

To the best of our knowledge, this error has not been considered in the literature
about Datalog debugging so far, but it is necessary for correctly diagnosing Dat-
alog programs. Consider again the program p(X):- q(X). q(X):-p(X). with
the intended interpretation I = {p(a), q(a)} and the query p(X). The computed
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answer {} is a missing answer with p(a) as missing instance. However, neither
of the two relations is incomplete, because their rules can produce the values
p(a), q(a) by means of the instance given by the substitution θ = {X &→ a}.
So, U = {p(a), q(a)} is an uncovered set of atoms and hence S = {p, q} is an
incomplete set of relations.

We say that a relation is buggy when it is wrong, incomplete or member of an
incomplete set of relations, and that it is well-defined otherwise. Observe that,
due to the use of negation, a wrong answer does not correspond always to a
wrong relation. For instance, in the following program:

p(X) :- r(X), not(q(X)).
% missing q(a).
r(a).

with intended interpretation I = {q(a), r(a)} the query p(X) produces the wrong
answer {p(a)} but there is no wrong relation in the program and instead there
is an incomplete relation (q).

As an example, consider the program of Figure 1. This program defines a
relation orbits by two facts and a rule establishing the transitive closure of
the relation. A relation star is defined by one fact and indicates that the sun
is a star. The relation intermediate is defined in terms of orbits, relating
two bodies X and Y whenever there is some intermediate body between them.
Finally, planet is defined as a body X that orbits directly a star Y, without any
other body in between. However, a mistake has been introduced in the program:
The underlined Y in the rule for intermediate should be Z. As a consequence,
the query planet(X) yields the missing answer {} (assuming that the atom
planet(earth) is in I). In the next section, we will show how such errors can
be detected by using declarative debugging based on computation graphs.

3 Computation Graphs

In this section, we define a structure for representing Datalog computations and
prove their adequacy for declarative debugging.

3.1 Graph Terminology

We consider finite directed graphs G = (V,E), where V is a finite set of vertices
and E a finite set of directed edges, E ⊆ V × V . Often, we use the notation
v ∈ G instead of v ∈ V and (u, v) ∈ G instead of (u, v) ∈ E. Given any vertex
u ∈ G we say that v ∈ G is a successor of u in G if (u, v) ∈ G, which we represent
by the notation succG(u, v).

Given G = (V,E), we say that G′ = (V ′, E′) is a subgraph of G if G′ is a graph
s.t. V ′ ⊆ V and E′ ⊆ E. A particular case of subgraph is the subgraph generated
from a subset of vertices V ′ ⊆ V . This subgraph is of the form G′ = (V ′, E′),
where E′ = {(u, v) ∈ G | u, v ∈ V ′}.
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In a directed graph, the output degree of a vertex v ∈ G is the cardinal of
the set {u ∈ G | (v, u) ∈ G} and it is represented by gr+G(v). Analogously,
the value gr−G(v) = | {u ∈ G | (u, v) ∈ G} | represents the input degree of v.
These concepts can be naturally extended to subgraphs by defining gr+G(G′) =
| {(u, v) ∈ G | u ∈ G′, v /∈ G′} |, gr−G(G′) = | {(v, u) ∈ G | u ∈ G′, v /∈ G′} |.
We remove the subindex G in gr+G, gr−G whenever the reference to the graph
considered cannot be ambiguous in the context.

A sequence of vertices u1, u2, . . . , un of G such that (ui, ui+1) ∈ G for all
i = 1 . . . n − 1 are called a walk from u1 to un. A walk s.t. u1 = un is called
a circuit. A walk with no repeated vertices except maybe the first and the last
vertex is called a path. If indeed u1 = un the path is called a cycle, i.e., a cycle is a
special case of circuit with exactly one vertex repeated. The notation pathG(u, v)
represents a path starting at u and ending in v in some graph G.

A directed graph G is called strongly connected if, for every pair of vertices
u, v ∈ G, there is a path from u to v and a path from v to u. The strongly
connected components of a directed graph are its maximal strongly connected
subgraphs, and they form a partition of G.

3.2 Datalog Computation Graphs

The computation graph (CG in short) for a query Q w.r.t. a program P is a
directed graphG = (V,E) such that each vertex V is of the form (Q′, Q′

M), where
Q′ is a subquery produced during the computation, and Q′

M is the computed
answer for Q′. The next definition includes the construction of a computation
graph. Observe that the answers of the subqueries are not relevant for the graph
structure and, therefore, they are included as part of the vertices in a last step.

Definition 5 (Computation Graph). Let P be a Datalog program and Q a
query either of the form p(ān) or not(p(ān)). The computation graph for Q w.r.t.
P is represented by a pair (V,E) of vertices and edges defined as follows:

The construction of the graph uses an auxiliary set A for containing the ver-
tices that must be expanded in order to complete the graph.

1. Put V = A = {p(ān)} and E = ∅.

2. While A 
= ∅ do:
(a) Select a vertex u in A with query q(b̄n). A = A \ {u}.
(b) For each rule R defining q, R = (q(tn) :− l1, . . . , lm) with m > 0, such

that there exists θ = mgu(t̄n, b̄n), the debugger creates a set S of new
vertices. Initially, we define S = ∅ and include new vertices associated
to each literal li, i = 1 . . .m as follows:
i. i = 1, a new vertex is included: S = S ∪ {atom(l1)θ}.
ii. i > 1. We consider the literal li. For each set of substitutions {σ1,
. . . , σi} with dom(σ1 · . . . · σi−1) ⊆ var(l1)∪ · · · ∪ var(li) such that
for every 1 < j ≤ i:
– atom(lj−1)(σ1 · . . . · σj−1) ∈ S, and
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– lj−1(σ1 · . . . · σj) ∈ (lj−1(σ1 · . . . · σj−1))M
include a new vertex in S:

S = S ∪ {atom(li)(σ1 · . . . · σi)}

(c) For each vertex v ∈ S, test whether there exists already a vertex v′ ∈ V
such that v and v′ are variants (i.e., there is a variable renaming). There
are two possibilities:
– There is such a vertex v′. Then, E = E ∪ {(u, v′)}. That is, if the

vertex already exists, we simply add a new edge from the selected
vertex u to v′.

– Otherwise, V = V ∪ {v}, A = A ∪ {v}, and E = E ∪ {(u, v)}.
3. Complete the vertices including the computed answer QM of every subquery
Q.

End of Definition

We will use the notation [Q = QMA ] for representing the content of the vertices.
The values QMA included at step 3 can be obtained from the underlying deduc-
tive database system by submitting each Q. The vertex is valid if QMA is the
expected answer for Q, and invalid otherwise.

Figure 2 shows the CG for the query planet(X) w.r.t. the program of Figure
1. The first vertex included in the graph at step 1 corresponds to planet(X).

intermediate(moon,sun) =
   {intermediate(moon,sun) }

orbits(moon,sun) =
  { orbits(moon,sun) }

orbits(moon,Z) = {
    orbits(moon,earth),
    orbits(moon,sun) }

orbits(X,Y)={ (earth,sun),
                       (moon,earth),
                       (moon,sun) }

intermediate(earth,sun)=
    { intermediate(earth,sun) }

orbits(sun,sun)={orbits(sun,sun)}

orbits(sun,Z) = { }
orbits(earth,Y) =

   { orbits(earth,sun) }

orbits(Z,sun) = {orbits(earth,sun),
                           orbits(moon,sun) }

orbits(earth,sun) =
   {orbits(earth,sun) }

planet(X) = { }

star(earth)={ }star(sun)={star(sun)}

Fig. 2. CG for the Query planet(X) w.r.t. the Program of Figure 1
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From this vertex and by using the only program rule for planet, four new
vertices are added, the first one corresponding to the first literal orbits(X,Y).
Since two values of Y satisfy this subquery, namely Y=sun and Y=earth, the de-
finition introduces two new vertices for the next literal star(Y), star(sun) and
star(earth). The last one produces the empty answer, but star(sun) succeeds.
Then, the last literal in the rule, not(intermediate(X,Y)), yields vertices for
the two values of X and the only value of Y that satisfies the two previous literals.
Observe, however, that the vertices for this literal are introduced in the graph
without the negation, i.e., the CG will contain only subqueries for atoms. This
simplifies the questions asked to the user during the navigation phase, and can
be done without affecting the correctness of the technique because the validity
of the positive literal implies the validity of its negation, and the other way
round (although the type of associated error changes, see Proposition 2). The
rest of the vertices of the example graph are built expanding the successors of
planet(X) and repeating the process until no more vertices can be added.

The termination of the process is guaranteed because in our setting the sig-
nature is finite and the CG cannot have two occurrences of the same vertex due
to step 2c, which introduces edges between existing vertices instead of creating
new ones when possible.

The next proposition relates the elements of the computed answer stored at
a vertex u with the immediate successors of u and vice versa.

Proposition 3. Let u = [Q = QM] be a vertex in the computation graph G of
some query w.r.t. a program P . Let p(s̄n) be an instance of Q. Then p(s̄n) ∈ QM
iff there exist a rule variant p(t̄n) : − l1, . . . , lm and a substitution θ such that
among the successors of u in G there are vertices of the form [atom(li)σi = Ai]
with θ ≥ σi for each i = 1 . . .m.

Proof. First, we suppose that p(s̄n) ∈ QM . Let (p(t̄n) : − l1, . . . , lm) ∈ P
and θ ∈ Subst be respectively the associated rule and the associated substitu-
tion to p(s̄n), as defined in Proposition 1, item 2. Then, by this proposition,
p(s̄n) = p(t̄n)θ, which implies the existence of the mgu(p(t̄n), p(s̄n)) because we
always consider rule variants and, hence, var(p(s̄n))∩ var(p(t̄n)) = ∅. Then, the
algorithm of Definition 5, item 2b, ensures that this program rule produces new
vertices, successors of u in G. We check by induction on the number of literals
in the body rule, m, that these vertices are of the form [atom(li)σi = Ai] with
θ ≥ σi for i = 1 . . .m. If m = 0, the result holds trivially. If m = 1, then there
is a successor of u of the form [atom(l1)θ = A1] (item 2(b)i of Definition 5). For
the inductive case m > 1, we assume that there is already a successor of u of the
form [atom(lm−1)σ = Am−1], θ ≥ σ, i.e., θ = σ · σm for some substitution σm.
By the graph construction algorithm, σ must be of the form σ = σ1 · . . . · σm−1.
By Proposition 1, item 2, M |= lm−1θ, i.e., lm−1θ ∈ Am−1 (by the same Propo-
sition 1, lm−1θ is ground, and therefore must be part of the computed answer for
lm−1σ). Hence, lm−1(σ1 · . . . ·σm) ∈ Am−1. In these conditions, the algorithm of
Definition 5 includes a new successor of u with the form atom(lm)(σ1 · . . . · σm).

Conversely, if there exists a program rule, a substitution, and successor ver-
tices as the proposition indicates, then it can be proved by a similar reasoning
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that M |= (l1, . . . , lm)θ, and then, Proposition 1, item 3, ensures that p(s̄n) =
p(t̄n)θ verifies M |= p(s̄n). In particular, if p(s̄n) is ground, this means that
p(s̄n) ∈ M. �

The relation among a vertex and its descendants also relates the validity of them,
as the following proposition states:

Proposition 4. Let G be a computation graph and u = [p(s̄n) = A] be an
invalid vertex of G such that p is a well-defined relation. Then, u has some
invalid successor v in G.

Proof. If the vertex u is invalid, then A is either a wrong or a missing answer
for p(s̄n), which means that it contains either a wrong or a missing instance.

Suppose that p(s̄n)θ is a wrong instance for some θ ∈ subst. Since p(s̄n)θ ∈
(p(s̄n))M, by Proposition 1, there exists some associated program rule R ∈ P
and substitution θ′ s.t. (R)θ′ = (p(t̄n) : − l1, . . . lm)θ′, with M |= liθ

′ for all
i = 1 . . .m and p(t̄n)θ′ = p(s̄n)θ. From Proposition 3, it can be deduced that
there are successor vertices of u of the form [atom(li)σi = Ai] for all i = 1 . . .m,
with θ′ ≥ σi. Assume that all these vertices are valid. Then, for each i = 1 . . .m
we can ensure the validity of liθ′ because:

– If li is a positive literal, from the validity of the answer for atom(li)σi we
obtain the validity of the more particular atom(li)θ′ (the validity of a formula
entails the validity of its instances).

– If li is a negative literal, from the validity of the answer for atom(li)σi we
obtain the validity of the answer for atom(li)θ′, and from this, the validity
of the answer for liθ′ (as a consequence of Proposition 2).

Then, we have that M |= (l1, . . . , lm)θ′, but M � p(t̄n)θ′, i.e., (R)θ′ is a wrong
instance. But this is not possible because p is well-defined. Therefore, some of
the successors of u must be invalid.

The proof is analogous in the case of a missing answer. �

3.3 Buggy Vertices and Buggy Circuits

In the traditional declarative debugging scheme [18] based on trees, program
errors correspond to buggy nodes. In our setting, we also need the concept of
buggy node, here called buggy vertex, but in addition our computation graphs
can include buggy circuits:

Definition 6 (Buggy Circuit). Let CG = (V,A) be a computation graph. We
define a buggy circuit as a circuit W = v1 . . . vn s.t. for all 1 ≤ i ≤ n:

1. vi is invalid.
2. If (vi, u) ∈ A and u is invalid then u ∈W .

Definition 7 (Buggy Vertex). A vertex is called buggy when it is invalid but
all its successors are valid.
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The next result proves that a computation graph corresponding to an initial error
symptom, i.e., including some invalid vertex, contains either a buggy circuit or
a buggy vertex.

Proposition 5. Let G be a computation graph containing an invalid vertex.
Then, G contains either a buggy vertex or a buggy circuit.

Proof. Let G be the computation graph and u ∈ G an invalid vertex. From G,
we obtain a new graph G′ by including all the invalid vertices reachable from u.
More formally, G′ is the subgraph of G generated by the set of vertices

{v ∈ G | there is a path Π = pathG(u, v) and w invalid for every w ∈ Π}

Now, we consider the set S of strongly connected components in G′,

S = {C | C is a strongly connected component ofG′}

The cardinality of S is finite since G′ is finite. Then, there must exist C ∈ S such
that gr+G′(C) = 0. Moreover, for all u ∈ C, succG(u, u′) means that either u′ ∈ C
or u′ is valid because u′ /∈ C, u′ invalid, would imply gr+G′(C) > 0. Observe also
that, by the construction of G′, every u ∈ C is invalid. Then:

– If C contains a single vertex u, then u is a buggy vertex in G.
– If C contains more than a vertex, then all its vertices form a buggy circuit

in G. �

4 Soundness and Completeness

The debugging process we propose can be summarized as follows:

1. The user finds out an unexpected answer for some query Q w.r.t. some
program P .

2. The debugger builds the computation graph G for Q w.r.t. P .
3. The graph is traversed, asking questions to the user about the validity of

some vertices until a buggy vertex or a buggy circuit has been found.
4. If a buggy vertex is found, its associated relation is pointed out as buggy. If

instead a buggy circuit is found, the set of relations involved in the circuit
are shown to the user indicating that at least one of them is buggy or that
the set is incomplete.

Now, we must check that the technique is reliable, i.e., that it is both sound
and complete. First we need some auxiliary lemmata.

Lemma 1. Let G be a computation graph for some query Q w.r.t. a program P ,
and let C = u1, . . . , uk, with uk = u1 be a circuit in G. Then, all the ui are of
the form [Qi = QiM] with Qi associated to a positive literal in its corresponding
program rule for i = 1 . . . k − 1.
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Proof. It can be proved that every relation occurring in some Qi depends recur-
sively on itself. This means that Qi cannot occur negatively in a clause because
this would mean than P is not stratified (see Lemma 1 in [14]). �

Lemma 2. Let v = [p(s̄n) = . . . ] be a vertex of some CG G obtained w.r.t. some
program P with standard model M. Let p(t̄n) :− l1, . . . , lm be a rule in P , and
θ s.t. p(t̄n)θ = p(s̄n)θ, and that M |= l1θ, . . . , lkθ for some 1 ≤ k ≤ m. Then, v
has children vertices in G of the form [atom(li)θi = . . . ] for i = 1 . . . k + 1, with
θ ≥ θi.

Proof. The proof corresponds to that of Proposition 3, but considering only the
first k + 1 literals of the program rule. �

Observe that theoretically the debugger could be applied to any computation
graph even if there is no initial wrong or missing answer. The following soundness
result ensures that in any case it will behave correctly.

Proposition 6 (Soundness). Let P be a Datalog program, Q be a query and
G be the computation graph for Q w.r.t. P . Then:

1. Every buggy node in G is associated to a buggy relation.
2. Every buggy circuit in G contains either a vertex with an associated buggy

relation or an incomplete set of relations.

Proof

1. Suppose that G contains a buggy vertex u ≡ [q(t̄n) = S]. By definition of
buggy vertex, all the immediate descendants of u are valid. Since vertex u
is invalid, by Proposition 4, the relation q cannot be well-defined.

2. Suppose that G contains a buggy circuit C ≡ u1, . . . , un with un = u1 and
each ui of the form [Ai = Si] for i = 1 . . . n−1. We consider two possibilities:
(a) At least one of the vertices in the circuit contains a wrong answer. Let

S be the set of the wrong atom instances contained in the circuit:

S = {B ∈ Si ∧B /∈ I | for some 1 ≤ i < n}

Obviously, S ⊆ M and S ∩ I = ∅. Now, we consider a stratification
{P1, . . . , Pk} of the program P and the sequence of Herbrand interpreta-
tions starting from ∅ and ending in M defined in item 5 of Proposition
1. We single out the first interpretation in this sequence including some
element of S. Such interpretation must be of the form TPi(I), with I the
previous interpretation in the sequence and 1 ≤ i ≤ k. Let p(s̄n) be an
element of TPi(I) ∩ S. By definition of TP , there exists a substitution θ
and a program rule (p(t̄n) :− l1, . . . , lm) ∈ P s.t. p(s̄n) = p(t̄n)θ and
that I |= liθ for every i = 1 . . .m. By Proposition 3, each li, i = 1 . . .m,
has some associated vertex V ′ successor of V in the CG with V ′ of the
form [atom(li)σ = . . . ] with σ more general than θ. We distinguish two
possibilities:
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– V ′ is out of the circuit. Then, by the definition of buggy circuit
V ′ is valid w.r.t. I, which means all the instances of liθ are also
valid w.r.t. I. This is true independently of whether li is positive or
negative because the validity of the answer for a query implies the
validity of the answer for its negation in our setting.

– V ′ is in the circuit. Then, li is positive due to Lemma 1, and by
construction, all the instances of liθ included in I are valid w.r.t. I.

In any case, I |= liθ for every i = 1 . . .m but p(t̄n)θ /∈ I and hence p is
an incorrect relation.

(b) If none of the vertices in the buggy circuit contains a wrong answer, then
every vertex contains a missing answer.
Put

S = {Aiσ ∈ I, Aiσ /∈ Si | for some 1 ≤ i < k}
i.e., S is the set of missing instances in the circuit. Next, we check that
S is an uncovered set of atoms, which means that the relations in the
buggy circuit form an incomplete set of relations. Let Ajσ ∈ S be an
atom of S with 1 ≤ j ≤ k, (p(t̄n) :− l1, . . . , lm) ∈ P be a program rule,
and θ ∈ Subst such that:
– p(t̄n)θ = Ajσ,
– I |= liθ for i = 1 . . .m

There must exist at least one liθ /∈M, 1 ≤ i ≤ m, otherwise Ajσ would
be in M. Let r be the least index, 1 ≤ r ≤ m, s.t. lrθ /∈ M. By Lemma
2, there is a successor of [Aj = Sj ] in G of the form w = [lrθ′ = Sr] with
θ ≥ θ′. Then, lrθ is a missing answer for w, i.e., it is an invalid vertex (it
is easy to prove that, if lθ has a missing answer, then lθ′ has a missing
answer for every θ′ s.t. θ ≥ θ′). This implies that w ∈ C, and hence lr is
a positive literal (by Lemma 1), liθ ∈ S, and S is uncovered. �

After the soundness result, it remains to prove that the technique is complete:

Proposition 7 (Completeness). Let P be a Datalog program and Q be a query
with answer QM unexpected. Then, the computation graph G for Q w.r.t. P
contains either a buggy node or a buggy circuit.

Proof. By the construction of the computation graph, G contains a vertex for
[atom(Q) = atom(Q)M]. If Q is positive, then Q = atom(Q) and the vertex is of
the form [Q = QM]. Then, by hypothesis, QM is unexpected, and therefore the
vertex is invalid. If Q is negative and it has an unexpected answer, it is straight-
forward to check that atom(Q) also produces an unexpected answer and hence
[atom(Q) = atom(Q)M] is also invalid. Then, the result is a direct consequence
of Proposition 5.

5 Implementation

The theoretical ideas explained so far have been implemented in a debugger
included as part of the Datalog system DES [13]. The CG is built after the user
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has detected some unexpected answer. The values (Q,QMA) are stored along the
computation and can be accessed afterwards without repeating the computation,
thus increasing the efficiency of the graph construction.

A novelty of our approach is that it allows the user to choose working either
at clause level or at predicate level, depending on the grade of precision that the
user needs, and its knowledge of the intended interpretation I. At predicate level,
the debugger is able to find a buggy relation or an incomplete set of relations. At
clause level, the debugger can provide additional information, namely the rule
which is the cause of error.

For instance, next is the debugging session at predicate level for the query
planet(X) w.r.t. our running example:

DES> /debug planet(X) p

Info: Starting debugger...

Is orbits(sun,sun) = {} valid(v)/invalid(n)/abort(a) [v]? v
Is orbits(earth,Y) = {orbits(earth,sun)}

valid(v)/invalid(n)/abort(a) [v]? v
Is intermediate(earth,sun) = {intermediate(earth,sun)}

valid(v)/invalid(n)/abort(a) [v]? n
Is orbits(sun,Y) = {} valid(v)/invalid(n)/abort(a) [v]? v
Is orbits(X,sun) = {orbits(earth,sun),orbits(moon,sun)}

valid(v)/invalid(n)/abort(a) [v]? v

Error in relation: intermediate/2

Witness query:

intermediate(earth,sun) = {intermediate(earth,sun)}

The first question asks whether the query orbits(sun,sun) is expected to
fail, i.e., it yields no answer. This is the case because we do not consider the sun
orbiting around itself. The answer to the second question is also valid because
the earth orbits only the sun in our intended model. But the answer to the
next question is invalid, since the query intermediate(earth,sun) should fail
because the earth orbits directly the sun. The next two answers are valid, and
with this information the debugger determines that there is a buggy node in the
CG corresponding to the relation intermediate/2, which is therefore buggy.
The witness query shows the instance that contains the unexpected instance.
This information can be useful for locating the bug.

In order to minimize the number of questions asked to the user, the tool
relies on a navigation strategy similar to the divide & query presented in [12]
for deciding which vertex is selected at each step. In other paradigms it has
been shown that this strategy requires an average of log2 n questions to find the
bug [19], with n the number of nodes in the computation tree. Our experiments
confirms that this is also the case when the CGs are in fact trees, i.e., they do
not contain cycles, which occurs very often. In the case of graphs containing
cycles the results also show this tendency, although a more extensive number of
experiments is still needed.
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6 Conclusions and Future Work

We have applied declarative debugging to Datalog programs. The debugger de-
tects incorrect fragments of code starting from an unexpected answer. In order
to find the bug, the tool requires the help of the user as an external oracle an-
swering questions about the validity of the results obtained for some subqueries.
We have proved formally the completeness and soundness of the technique, thus
proposing a solid foundations for the debugging of Datalog programs. During the
theoretical study, we have found that the traditional errors considered usually
in logic programming are not enough in the case of Datalog where a new kind
of error, the incomplete sets of predicates, can occur.

The theoretical ideas have been set in practice by developing a declarative
debugger for the Datalog system DES. The debugger allows diagnosing both
missing and wrong answers, which constitute all the possible errors symptoms of
a Datalog program. Although a more extensive workbench is needed, the prelim-
inary experiments are encouraging about the usability of the tool. The debugger
allows to detect readily errors which otherwise would take considerable time.
This is particularly important for the DES system, which has been developed
with educational purposes. By using the debugger, the students can find the er-
rors in a program by considering only its declarative meaning and disregarding
operational issues.

From the point of view of efficiency, the results are also quite satisfactory. The
particular characteristics of DES make all the information necessary for produc-
ing the graph available after each computation. The answers to each subquery,
therefore, are not actually computed in order to build the graph but simply
pointed to. This greatly speeds up the graph construction and keeps small the
size of the graph even for large computations.

As future work, we consider the possibility of allowing more elaborated an-
swers from the user. For instance, indicating that a vertex is not only invalid but
also that it contains a wrong answer. The identification of such an answer can
greatly reduce the number of questions. Another task is to develop and compare
different navigation strategies for minimizing the number of questions needed
for finding the bug.
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datalog programs. In: 16th International Workshop on Functional and (Constraint)
Logic Programming (WFLP 2007) (June 2007)

12. Shapiro, E.: Algorithmic Program Debugging. In: ACM Distiguished Dissertation.
MIT Press, Cambridge (1982)
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Abstract. Within the context of the relational model, a general tech-
nique for establishing that the translation of a view update defined by
constant complement is independent of the choice of complement is pre-
sented. In contrast to previous results, the uniqueness is not limited to
order-based updates (those constructed from insertions and deletions),
nor is it limited to those well-behaved complements which define closed
update strategies. Rather, the approach is based upon optimizing the
change of information in the main schema which the view update en-
tails. The only requirement is that the view and its complement together
possess a property called semantic bijectivity relative to the information
measure. It is furthermore established that a very wide range of views
have this property. This results formalizes the intuition, long observed in
examples, that it is difficult to find different complements which define
distinct but reasonable update strategies.

1 Introduction

It has long been recognized that there is no ideal solution to the problem of
supporting updates to views of database schemata. Rather, all solutions involve
compromise of some sort. At the most conservative end of the spectrum lies
the constant-complement strategy, introduced by Bancilhon and Spyratos more
than a quarter-century ago [1]. It has recently seen renewed interest, both on the
theoretical front [2] [3] and as a framework for applications [4], to no small extent
because it is precisely the strategy which avoids all so-called update anomalies
[3, Sec. 1].

The idea behind the constant-complement strategy is simple. Let D be a
database schema, with LDB(D) denoting its set of legal states. An update on D
is just a pair (M1,M2) ∈ LDB(D)×LDB(D) in whichM1 is the current state and
M2 is the new state after the update. A view of D is a pair Γ = (V, γ) in which V
is the view schema and γ : LDB(D) → LDB(V) is the view mapping. Since a view
is window on the main schema, its state must always be determined by that of
the main schema D; hence, γ is always taken to be surjective. LetM1 ∈ LDB(D)
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be the current state of the main schema D, so that γ(M1) is the current state
of the view Γ . A translation of the update request (γ(M1), N2) ∈ LDB(V) ×
LDB(V) (relative to M1) is an update (M1,M2) on D with the property that
γ(M2) = N2. In general, there are many such translations. However, now let
Γ ′ = (V′ , γ′) be a second view of D. The decomposition mapping for {Γ, Γ ′}
is γ

∐
γ′ : LDB(D) → LDB(V)

∐
LDB(V′) given on elements by M &→ (γ(M) '

γ′(M)). Here ' is the disjoint union operator; thus, the decomposition mapping
retains the state of each constituent view. (See Definition 3.4 for details.) The
view Γ ′ is called a complement of Γ , and {Γ, Γ ′} is called a complementary pair,
if this decomposition mapping is injective (or lossless), so that the state of D is
recoverable from the combined states of the two views. A translation (M1,M2)
of the proposed view update (γ(M1), N2) to Γ has constant complement Γ ′ if
γ′(M1) = γ′(M2). If {Γ, Γ ′} forms a complementary pair, then it is easy to see
that there can be at most one translation of (γ(M1), N2) which has constant
complement Γ ′, since there can be at most one M2 ∈ LDB(D) with the property
that (γ

∐
γ′)(M2) = (N2, γ

′(M1)). Thus, upon fixing a complement Γ ′ to Γ ,
translations of view updates become unique.

There is a very desirable feature which limits the choice of complement Γ ′. In
general, the user of the view Γ will not know the precise state M1 of the main
schema; rather, only the image γ(M1) will be known within the context of Γ .
Ideally, whether or not the view update (γ(M1), N2) is allowed should depend
only upon γ(M1) and N2, and not upon M1 itself. In other words, given M ′

1 ∈
LDB(D) with the property that γ(M1) = γ(M ′

1), the view update (γ(M1), N2)
should either be allowed for both M1 and M ′

1, or else for neither. In [3, 2.14],
it is shown that this condition recaptured by requiring that the pair {Γ, Γ ′} be
meet complementary, in the sense that the congruences on LDB(D) defined by
γ and γ′ commute.

Even upon limiting attention to commuting congruences, there is a further
complication surrounding the constant-complement approach; namely, the trans-
lation of a view update to the main schema is dependent upon the choice of
complement, and except in the simplest of situations, there are many possible
complements. In contrast to this theoretical result, in practice it is often clear
that there is a natural translation of view updates to the main schema which is
supported by the “obvious” complement, with other more contrived translations
supported by equally contrived complements. In [3], it is argued that there is a
key additional property which “good” views have; namely, that they are mono-
tonic with respect to the natural order on states. In the context of the relational
algebra, this amounts to excluding negation. With this additional condition en-
forced, it has been shown that the translation of a view update to the main
schema is independent of the choice of complement [3, 4.3], with the limitation
that the updates themselves are order realizable; that is, realizable as sequences
of legal insertions and deletions.

In this paper, the issue of relaxing this limitation to order-based updates is
addressed with the context of the classical relational model. Rather than using
a syntactic notion of monotonicity based upon the order structure of database
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states, a semantic formulation, which characterizes the information content of
a database state in terms of the set of sentences in a particular family which
it satisfies, is employed. The decomposition mapping is then required to be not
only bijective in the ordinary sense but also a semantic bijection, in the sense
that it defines a bijection between (semantic equivalence classes of) the sentences
which define the information content. Under this requirement, it is shown that
constant-complement translations of all view updates, order based or not, are
always information optimal, and hence unique and independent of the choice of
complement. It is furthermore shown that when the main schema is constrained
by a wide range of classical database dependencies, and the view mappings are
SPJ-mappings, that is, conjunctive queries, these conditions are always satisfied.
Interestingly, this result is not limited to meet-complementary pairs in the sense
of [3, 2.12]; that is, pairs of view which define well-behaved families of updates.
Rather, it applies to any pair of complementary views whose decomposition map-
ping is a semantic bijection, and any update defined via constant-complement
within that context.

This work is based upon the notions of information content and optimal trans-
lations which were introduced in [5]. In that work, it is argued that view updates
should be information optimal, in that the correct reflection should entail the
least information change over all possibilities. However, the information mea-
sure in that case allows for the equivalence of updates which are isomorphic in a
certain sense. This work applies that philosophy under the additional constraint
that the update strategy should be defined by constant complement, with the
reflected updates to the main schema truly unique, and not just isomorphic.

Although the results are vastly different, some of the background material of
this paper is similar or identical to that of [5]. Specifically, much of Section 2, as
well as some content of Definition 3.2, Definition 4.2, Definition 4.3, Definition
4.17 and Definition 4.19 is adapted from [5], although numerous changes in detail
and often simplifications have been made to accommodate the specific needs of
this work.

2 The Relational Model

The results of this paper are formulated within the relational model, and fa-
miliarity with its standard notions, as presented in references such as [6] and
[7], is assumed. Nevertheless, there are aspects which must be formulated with
particular care. Most important are the need to take all relational schemata
over the same domain, with the same constant symbols, and the need to express
databases themselves as sets of ground atoms. For this reason, the key features
which are unique to this formulation are presented in this section.

Definition 2.1 (Relational contexts and constant interpretations). A
relational context contains the logical information which is shared amongst the
schemata and database mappings. Formally, a relational context D consists of a
finite nonempty set AD of attribute names, a countable set Vars(D) of variables,
and for each A ∈ AD , an at-most-countable set ConstD(A) of constant symbols,
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with Const(D) =
⋃
{ConstD(A) | A ∈ AD}. The variables in Vars(D) are further

partitioned into two disjoint sets; a countable set GenVars(D) = {x0, x1, x2, . . .}
of general variables, and special AD -indexed set AttrVars(D) = {xA | A ∈ AD} of
attribute variables. The latter is used in the definition of interpretation mappings;
see Definition 2.6 for details.

Databases are represented as ground atoms, as elaborated in Definition 2.2
below. Therefore, it is necessary that each domain element be bound to a unique
constant symbol. Formally, a constant interpretation for the relational context
D is a pair I = (DomI , IntFnI) in which DomI is a countably infinite set, called
the domain of I, and IntFnI : Const(D) → DomI is a bijective function, called
the interpretation function of I. This effectively stipulates the following two
well-known conditions [8, p. 120]:

Domain closure: (∀x)(
∨

a∈Const(D) x = a) (DCA(D))
Unique naming: (¬(a = b)) for distinct a, b ∈ Const(D) (UNA(D))

Since there are countably many constant symbols, the domain-closure axiom is
not a finite disjunction. This is not a problem however, since it is never used in
a context in which a first-order constraint is necessary. Because the assignment
of domain values to constants is fixed, it is not necessary to verify independently
that it holds.

As a notational convention, from this point on, unless stated otherwise, fix a
relational context D and a constant interpretation I = (DomI , IntFnI) for it.

Definition 2.2 (Tuples and databases). An unconstrained relational
schema over (D, I) is a pair D = (Rels(D),ArD) in which Rels(D) is finite
set of relational symbols and ArD : Rels(D) → 2AD a function which assigns an
arity, a set of distinct attributes from AD , to each R ∈ Rels(D).

A ground R-atom is a function t : ArD(R)→ Const(D) with the property that
t[A] ∈ ConstD(A). The set of all ground R-atoms is denoted GrAtoms(R,D). A
ground D-atom is a ground R-atom for some R ∈ Rels(D), with the set of all
ground D-atoms denoted GrAtoms(D). An atom database for D is a finite subset
of GrAtoms(D), with the set of all atom databases for D denoted DB(D).

An R-atom t is defined similarly, except that t[A] is not required to be a
constant; rather, t[A] ∈ ConstD(A) ∪ GenVars(D)∪ {xA}. The D-atoms and the
set Atoms(D) are defined in the obvious way.

It is convenient to be able to recover the associated relation name from a tuple,
and so tagging is employed, in which tuples are marked with the relation name.
Formally, this is accomplished by introducing a new attribute RName 
∈ AD , and
then regarding a ground R-atom not as a function t just on ArD(R) but rather
as one on {RName} ∪ ArD(R) with the property that t[RName] = R. Tagging
of R-atoms will be used from this point on throughout the paper. Nevertheless,
in writing such atoms, the more conventional notation R(a1, a2, . . . , an) will be
used in lieu of the technically more correct (R, a1, a2, . . . , an), although tags will
be used in formal constructions.

Definition 2.3 (Formulas and constraint classes). The first-order lan-
guage associated with the relational schema D is defined in the natural way;
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however, it is useful to introduce some notation which identifies particular sets
of formulas. Define WFF(D) to be the set of all well-formed first-order formulas
with equality in the language whose set of relational symbols is Rels(D), whose
set of constant symbols is Const(D), and which contains no non-nullary func-
tion symbols. The variables are those of D; these formulas are typed only to the
extent that for A ∈ ADD, the variable xA may only occur in a D-atom in a
position associated with attribute A. In other words, the conditions for D-atoms
identified in Definition 2.2 are enforced. WFS(D) denotes the subset of WFF(D)
consisting of sentences; that is, formulas with no free variables.

A constraint class C identifies a subset of WFF(D), denoted WFF(D, C). Of
particular interest in this work are ∃
=, ∃+, ∃∧+, Atoms, and 1, defined as
follows.

• WFF(D, ∃
=) is the subset of WFF(D) consisting of those formulas in which
only existential quantification is allowed, and in which negation (explicit or
implicit) occurs only at the level of equality atoms. More precisely, negation
may only occur in the form ¬(τ1 = τ2), with τ1 and τ2 terms. Negation of
other atoms, such as in (∃x1)(∃x2)(R(x)∧(¬S(x)), is prohibited.

• WFF(D, ∃+) is the subset of WFF(D, ∃
=) in which no negation at all is
allowed.

• WFF(D, ∃∧+) is the subset of WFF(D, ∃+) in which disjunction is also dis-
allowed, so that the only logical connective which is allowed is conjunction.
These formulas define the so-called conjunctive queries [9, Sec. 4.2].

• WFF(D,Atoms) is just Atoms(D).
• WFF(D,1) is shorthand for WFF(D).

In each case, the corresponding set WFS(D, C) of sentences is defined in the
obvious way. In particular, note that WFS(D,Atoms) = GrAtoms(D).

Definition 2.4 (Atomic models). Even though databases are represented as
sets of ground atoms, and not as interpretations in the usual logical sense, it is
still essential to have an appropriate notion of model for a given sentence. This is
relatively straightforward; a model for a sentence ϕ is a database which is consis-
tent with both ϕ and the unique-naming axioms. There is one complication, how-
ever. In representing a database as a set of D-atoms, the closed-world assumption
is implicit. On the other hand, to express what it means for such a representa-
tion to satisfy an arbitrary sentence in WFS(D), it is necessary to state explicitly
which atoms are not true as well. Formally, for M ∈ DB(D), define the diagram
ofM to be DiagramD(M) = M∪{¬t | t ∈ GrAtoms(D)\M}. Now, say thatM ∈
DB(D) is an atomic I-model of ϕ ∈ WFS(D) if DiagramD(M) ∪ {ϕ} ∪ UNA(D)
is consistent. AtModI(ϕ) denotes the set of all atomic I-models of ϕ, with
AtModI(Φ) =

⋂
{AtModI(ϕ) | ϕ ∈ Φ} for Φ ⊆WFS(D).

Definition 2.5 (Schemata with constraints and constrained
databases). To obtain full relational schemata, constraints are added to the
unconstrained schemata of Definition 2.2. Formally, a relational schema over
(D, I) is a triple D = (Rels(D),ArD ,Constr(D)) in which (Rels(D),ArD) is an
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unconstrained relational schema over (D, I) and Constr(D) ⊆ WFS(D) is the
set of dependencies or constraints of D.

Define the legal (or constrained) databases LDB(D) of D to be
AtModI(Constr(D)).

Define the equivalence relation ≡D on WFS(D) by ϕ1 ≡D ϕ2 iff AtModI(ϕ1)∩
LDB(D) = AtModI(ϕ2)∩LDB(D) or, equivalently, AtModI({ϕ1}∪Constr(D)) =
AtModI({ϕ2} ∪ Constr(D)). Thus, ≡D identifies sentences which have identical
truth values on all M ∈ LDB(D). The equivalence class of ϕ1 under ≡D is
denoted [ϕ1]≡D .

Definition 2.6 (Database morphisms and views). Let D1 and D2 be
relational schemata over (D, I). There are two fundamental ways to represent a
database morphism f : D1 → D2 in the relational context. On the one hand,
such a morphism may be represented as a function f : DB(D1) → DB(D2),
using expressions from the relational algebra. On the other hand, by providing an
interpretation formula fR ∈ WFF(D1) for each R ∈ Rels(D2), the morphism may
be represented using the relational calculus [10]. The equivalence of these two
representations is one of the classical results of relational database theory [6, Sec.
2.4-2.6]. The interpretation formulation is taken as the basic one in this work.
Formally, given R ∈ Rels(D2), an interpretation for R into D1 is a ϕ ∈ WFF(D)
in which precisely the variables {xA | A ∈ ArD(R)} are free, with xA is used
to mark the position in the formula which is bound to attribute A. The set of
all interpretations of R into D1 is denoted Interp(R,D1). A syntactic morphism
f : D1 → D2 is a family f = {fR | R ∈ Rels(D2) and fR ∈ Interp(R,D1)}.

Let t ∈ Atoms(R,D2). The substitution of t into f , denoted Subst〈f, t〉, is the
formula in WFF(D1) obtained by substituting t[A] for xA, for each A ∈ ArD(R).
Note that If t is a ground atom, then Subst〈f, t〉 ∈WFS(D1).

For M ∈ DB(D1), define f(M) = {t ∈ GrAtoms(D2) | M ∈
AtModI(Subst〈f, t〉)}. f is called an LDB-morphism if it maps legal databases
to legal databases; formally, an LDB-morphism has the property that f(M) ∈
LDB(D2) for each M ∈ LDB(D1). When no qualification is given, database mor-
phism will always mean LDB-morphism.

Let D be a relational schema over (D, I). A (relational) view of D is a pair
Γ = (V, γ) in which V is a relational schema over (D, I) and γ : D → V is an
LDB-morphism which is furthermore LDB-surjective in the sense that for every
N ∈ LDB(V), there is an M ∈ LDB(D) with γ(M) = N . Surjectivity is required
because the state of the view must always be determined by the state of the
main schema D.

3 Updates and View Complements

In this section, some basic definitions and notation regarding updates and their
reflections are presented, as are the key ideas surrounding the constant-
complement update strategy.

Notation 3.1. Throughout this section, take D to be a relational schema over
(D, I).
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Definition 3.2 (Updates and reflections). Let Γ = (V, γ) be a view on D.
An update on D is a pair (M1,M2) ∈ LDB(D)×LDB(D).M1 is the current state,
and M2 the new state. To describe the situation surrounding an update request
on Γ , it is sufficient to specify the current state M1 of the main schema and the
desired new state N2 of the view schema V. The current state of the view can
be computed as γ(M1); it is only the new state M2 of the main schema (subject
to N2 = γ(M2)) which must be obtained from an update strategy. Formally, an
update request from Γ to D is a pair (M1, N2) in which M1 ∈ LDB(D) (the old
state of the main schema) and N2 ∈ LDB(V) (the new state of the view schema).
A realization of (M1, N2) along Γ is an update (M1,M2) on D with the property
that γ(M2) = N2. The update (M1,M2) is called a reflection (or translation) of
the view update (γ(M1), N2). The set of all realizations of (M1, N2) along Γ is
denoted UpdRealiz〈M1, N2, Γ 〉.

Notation 3.3 (Disjoint union). In the construction of complementary views,
the disjoint union of two sets will be used to construct the coproduct of views.
As the symbol

∐
will be reserved to denote a formal coproduct, ' will be used

to represent the disjoint union of two sets. Thus, A'B is just a “tagged” version
of A ∪ B, in which it is possible to determine from which of the two sets an
element arose. Note that it is possible for there to be two instances of a given
element x in A 'B, one tagged with A and the other tagged with B.

Definition 3.4 (The coproduct of two views). The coproduct of two views
is the natural one which arises when complementation is considered. (The termi-
nology of and notation for coproduct is used because this construction is a true
coproduct in the categorical sense [11, §18]). Basically, the set of relations of the
coproduct schema is the disjoint union of those of the two component schemata,
with each such relation retaining its interpretation function. The databases are
defined similarly via disjoint union. (Recall that tuples are tagged (see Definition
2.2), so a database for a schema consists of just one big set of tuples.) Formally,
let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be views of D. The coproduct of Γ1 and Γ2

is the view Γ1

∐
Γ2 = (V1

∐
V2, γ1

∐
γ2), defined as follows.

(a) Rels(V1

∐
V2) = Rels(V1) ' Rels(V2).

(b) For i ∈ {1, 2} and R ∈ Rels(Vi), (γ1
∐
γ2)R = γR

i .
(c) LDB(V1

∐
V2) = {γ1(M) ' γ2(M) |M ∈ LDB(D)}.

(d) Constr(V1

∐
V2) is the set of all first-order sentences which define the

constraints on LDB(V1

∐
V2).

Note that, in view of (c), γ1
∐
γ2 is surjective by construction. Hence, there is

no question that γ1
∐
γ2 is a view.

In general, there is no straightforward representation for Constr(V1

∐
V2),

the set of constraints of this coproduct. Nevertheless, it can be shown that it
has a representation as a set of first-order sentences [12, Ch. 26]. Since this
representation is not central to the theme of this paper, it will not be elaborated
further.

It should perhaps also be noted that, strictly speaking, the notation V1

∐
V2

is incomplete, since this product depends not only upon V1 and V2, but upon
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the view morphisms γ1 and γ2 as well. However, since no confusion can result, a
more accurate but correspondingly cumbersome notation will not be introduced.

Definition 3.5 (Constant-complement realizations and complemen-
tary pairs). Although the ideas surrounding constant-complement update are
well known [1] [3], it is important to formalize them within the current context.
Let Γ1 and Γ2 be views of D.
(a) {Γ1, Γ2} forms a complementary pair if the underlying function γ1

∐
γ2 :

LDB(D) → LDB(V1

∐
V2) which sends M &→ γ1(M) ' γ2(M) is injective

(and hence bijective).
(b) For (M1, N2) an update request from Γ1 to D, (M1,M2) ∈

UpdRealiz〈M1, N2, Γ1〉 is called a Γ2-constant realization of (M1, N2) if
γ2(M1) = γ2(M2).

The following classical observation [1, Sec. 5], which follows immediately from
the injectivity of γ1

∐
γ2, is key to the entire strategy.

Observation 3.6. Let {Γ1, Γ2} be a complementary pair, and let (M1, N2) be an
update request from Γ1 to D. Then there is at most one Γ2-constant realization
of (M1, N2), and this realization exists iff there is an M2 ∈ LDB(D) such that
(γ1

∐
γ2)(M2) = N2 ' γ2(M1). In this case, the unique realization is given by

(M1,M2). �

4 The Theory of Unique Reflections

In this section, the central results on uniqueness of constant-complement trans-
lations are developed.

Notation 4.1. Throughout this section, unless stated specifically to the con-
trary, take D, D1, and D2 to be a relational schema over (D, I), Γ = (V, γ),
Γ1 = (V1, γ1), and Γ2 = (V2, γ2) to be views on D, with C a constraint class.

Definition 4.2 (Information content and separation). A central theme
of this work is that the information content of a database may be characterized
by the set of sentences from a particular set which it satisfies. Let Σ ⊆ WFS(D)
and let M ∈ DB(D). The information content of M relative to Σ is the set
of all sentences in Σ which are true for M . More precisely, Info〈M,Σ〉 = {ϕ ∈
Σ | M ∈ AtModI(ϕ)}. M1,M2 ∈ DB(D) are Σ-equivalent if they have the
same information content relative to Σ; i.e., Info〈M1, Σ〉 = Info〈M2, Σ〉. Σ is
separating for D if whenever M1,M2 ∈ LDB(D) are Σ-equivalent, it must be
the case that M1 = M2.

Definition 4.3 (Information-monotone sentences). Intuitively, if M1 ⊆
M2, then it should be the case that M2 contains more information than M1;
i.e., Info〈M1, Σ〉 ⊆ Info〈M2, Σ〉. However, in general, M1 will satisfy constraints
which M2 does not; for example, if t ∈ M2 \M1, then ¬t is true of M1 but not
of M2. If such negative constraints are excluded, then Σ is termed information
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monotone. More formally, The sentence ϕ ∈ WFS(D) is information monotone
if for any M1,M2 ∈ DB(D) if M1 ⊆M2, then Info〈M1, {ϕ}〉 ⊆ Info〈M2, {ϕ}〉. In
other words, ϕ is information monotone if AtModI(ϕ) is closed under supersets
within DB(D); whenever M ∈ AtModI(ϕ), then all M ′ ∈ DB(D) with M ⊆M ′

are also in AtModI(ϕ). The set Σ ⊆ WFS(D) is information monotone if each
ϕ ∈ Σ has this property.

Proposition 4.4 (Key instances of information monotone families).
Any subset of WFS(D, ∃
=) is information monotone and separating. This in-
cludes, in particular, WFS(D, ∃+), WFS(D, ∃∧+), and GrAtoms(D).

Proof. It is immediate that any formula involving only existential quantification
and not involving any negation is information monotone. That allowing negations
of equality atoms does not violate information monotonicity follows from the fact
that the equality relation is fixed over all databases. To see this more clearly,
consider adding a new, fixed relation 
= which represents inequality explicitly, and
replacing each atom of the form ¬(τ1 = τ2) with 
=(τ1, τ2). Then, all negation can
be removed from the sentences, and so any such subset is information monotone.

To complete the proof, it suffices to observe that any subset of WFS(D)
which contains GrAtoms(D) is separating, and GrAtoms(D) is contained in both
WFS(D, ∃+) and WFS(D, ∃∧+). �

The proof of the following observation is immediate, but the statement is of such
central importance that it is worth noting explicitly.

Observation 4.5 (Info〈M,Σ〉 determines M for Σ separating). Let Σ be
an information monotone and separating family on D.
(a) For any M ∈ LDB(D), M is the least element (under ⊆) of

AtModI(Info〈M,Σ〉) ∩ LDB(D).
(b) If M1,M2 ∈ LDB(D), then M1 ⊆M2 iff Info〈M1, Σ〉 ⊆ Info〈M2, Σ〉. �

A central premise of this work is that it is advantageous to view database mor-
phisms as mappings between sentences (in an appropriate information-monotone
family), rather than just as mappings from databases to databases. The following
definition formalizes this idea.

Definition 4.6 (Substitution of sentences). Let f : D1 → D2 be a database
morphism. The association t &→ Subst〈f, t〉 defined in Definition 2.6 may be ex-
tended in a natural way to all of WFS(D2). Specifically, the interpretation of ϕ
in f is the sentence Subst〈f, ϕ〉 ∈WFS(D1) which is obtained by first renaming
all quantified variables so that no two formulas involved in the construction have
any such variables in common, and then replacing each atom ψ which occurs in
ϕ with Subst〈f, ψ〉. As a specific example, suppose that D1 has two relation sym-
bols R11[ABD] and R12[DBC], and that D2 has two relation symbols R21[AB]
and R22[BC]. Let the defining formulas be fR21 = (∃x1)(R11(xA, xB, x1)) and
fR22 = (∃x2)(∃x3)(R11(x2, xB , x3)∧R12(x3, xB, xC)), with the sentence to be
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interpreted ϕ = (∃x4)(R21(a, x4)∧R22(x4, c)). Here a and c are constants. Then
Subst〈f, ϕ〉 =

(∃x1)(∃x2)(∃x3)(∃x4)(R11(a, x4, x1)∧R11(x2, x4, x3)∧R12(x3, x4, c)).
For more detailed examples, see [10, Sec. 3].

Think of this definition as specifying a function Subst〈f,−〉 : WFS(D2) →
WFS(D1). The key feature to keep in mind is that while the underlying func-
tion f : LDB(D1) → LDB(D2) maps databases of D1 to databases of D2, the
interpretation mapping Subst〈f,−〉 sends sentences in WFS(D2) to sentences in
WFS(D1). Thus, the direction is reversed. It should perhaps be noted that this
definition extends easily to well-formed formulas which are not sentences, but
since such an extension is not needed here, it will not be elaborated.

The relationship between the mapping of databases and the mapping of mod-
els is a close one, as shown by the following observation, whose straightforward
proof is omitted.

Observation 4.7. Let f : D1 → D2 be a database morphism, and let M ∈
DB(D1). Then for any ϕ ∈ WFS(D2), f(M) ∈ AtModI(ϕ) iff M ∈
AtModI(Subst〈f, ϕ〉). �

Definition 4.8 (Schemata, morphisms, and views of class C). To mea-
sure information content using the sentences of class C, it is important that the
database schemata and views respect that class in a certain way.
(a) The database schema D is of class C if WFS(D, C) is separating for D.
(b) The database morphism f : D1 → D2 is of class C if for every ϕ ∈

WFF(D2, C), Subst〈f, ϕ〉 ∈WFF(D1, C).
(c) The view Γ = (V, γ) is of class C if both V and γ are of that class.

In view of Proposition 4.4, any C which contains GrAtoms(D) is separating,
and hence any database schema D is of such a class C. However, the notion
of a database morphism being of class C is more complex, and warrants closer
attention via a few examples.

Example 4.9 (Morphisms of class C). Let E1 be the relational schema
with two ternary relation symbol R11[ABC] and R12[ABC], and let E2 be the
schema with the single relation symbol R2[AB]. Define the morphism g11 : E1 →
E2 by gR2

11 = (∃z)(R11(xA, xB, z)∧R12(xA, xB, z)). In other words, R2 is the
projection of the intersection of R11 and R12. Then g11 is of class C for C ∈
{∃
=, ∃+, ∃∧+,1}, but not for C = Atoms, since Subst〈gR2

11 , t〉 is not equivalent
to a ground atom for t ∈ GrAtoms(E2). On the other hand, define g12 : E1 →
E2 by gR2

12 = (∃z)(R11(xA, xB, z)∧(¬R12(xA, xB , z))). In this case, R2 is the
projection of the difference of R11 and R12, and g12 is of class C for C = 1,
but not for any of the others listed above, since the sentence Subst〈gR2

12 , ϕ〉 will
always contain non-removable internal negation, even for ϕ a ground atom. In
particular, g12 is not of class ∃∧+. Finally, define g13 : E1 → E2 by gR2

11 =
(∃z)(R11(xA, xB , z)∨R12(xA, xB , z)). In other words, R2 is the projection of the
union of R11 and R12. Then g13 is of class C for C ∈ {∃
=, ∃+,1}, but not
for C ∈ {∃∧+,Atoms}, since Subst〈g13, ϕ〉 will always contain non-removable
disjunction, even for ϕ a ground atom.
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Notation 4.10. For the remainder of this section, unless stated specifically to
the contrary, take all database schemata to be of class C.
Definition 4.11 (Semantic morphisms). Let f : D1 → D2 be a database
morphism of class C. In addition to the standard notions of injectivity, surjectiv-
ity, and bijectivity for the induced mapping f : LDB(D1)→ LDB(D2), there are
corresponding notions associated with the substitution mapping Subst〈f,−〉 :
WFS(D2, C)→WFS(D1, C). The point of care to be taken is that the identifica-
tion is only unique up to the equivalence ≡D as defined in Definition 2.5.
(a) f is semantically injective for C if for every ϕ1, ϕ2 ∈ WFS(D2, C), if

Subst〈f, ϕ1〉 ≡D1 Subst〈f, ϕ2〉, then ϕ1 ≡D2 ϕ2.
(b) f is semantically surjective for C if for every ϕ1 ∈ WFS(D1, C), there is a

ϕ2 ∈ WFS(D2, C) with Subst〈f, ϕ2〉 ≡D1 ϕ1.
(c) f is semantically bijective for C if it is both semantically injective and

semantically surjective for C.
A view Γ = (V, γ) is said to be semantically bijective for C precisely when the
morphism γ has that property.

It should be stressed that for f to be of class C is causa sine qua non to have
any of the above properties. If f is not of class C, then it is not semantically
injective, surjective, or bijective for C, by definition.

It is easy to see that the morphisms g11, g12, and g13 of Example 4.9 are se-
mantically injective; that is, logically distinct formulas in E2 give rise to logically
distinct formulas in E1. This is true more generally; surjectivity of the underly-
ing database mapping translates to semantic injectivity provided the morphism
is of the appropriate class.

Proposition 4.12 (Underlying surjectivity ⇒ semantic injectivity).
Let f : D1 → D2 be a database morphism of class C. If the associated function
f : LDB(D1)→ LDB(D2) is surjective, then f is semantically injective for C. In
particular, for every view Γ = (V, γ) of class C, the morphism γ is semantically
injective for C.
Proof. Let ϕ1, ϕ2 ∈ WFS(D2, C) with ϕ1 
≡D2 ϕ2. Then there exists an N ∈
LDB(D2) which is an atomic model of one but not the other. Without loss of gen-
erality, assume that N ∈ AtModI(ϕ1)\AtModI(ϕ2). Then for any M ∈ f−1(N),
M ∈ AtModI(Subst〈f, ϕ1〉) \ AtModI(Subst〈f, ϕ2〉). Hence, Subst〈f, ϕ1〉 
≡D1

Subst〈f, ϕ2〉, and so f is semantically injective. �

For this work, semantic surjectivity on its own is not of central importance.
Rather, the key property is semantic bijectivity. Examples illustrating these ideas
are found in Example 4.16 below. First, however, it is essential to introduce some
supporting ideas.

The semantic bijectivity of a morphism f : D1 → D2 entails nothing more
than a bijective correspondence between the equivalence classes of sentences of
class C in D1 and those of D2. This is formulated precisely as follows.

Observation 4.13 (Characterization of semantic bijectivity). Let f :
D1 → D2 be database morphism of class C. Then f if semantically bijective for C
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iff it induces a natural bijection between WFF(D2, C)/≡D2 and WFF(D1, C)/≡D1

via [ϕ]≡D2
&→ [Subst〈f, ϕ〉]≡D1

. �

Definition 4.14 (The reconstruction morphism). Let f : D1 → D2 be
a database morphism. If the induced function f : LDB(D1) → LDB(D2) is
bijective, then there is trivially a function g : LDB(D2)→ LDB(D1) for which is
inverse to f . What is remarkable is that there is database morphism g : D2 → D1

in the logical sense which induces g. This is a consequence of Beth’s theorem
from model theory [12, Thm. 22.4]. This g is called the reconstruction morphism
for f and is denoted RcMor(f).

Observe that f and RcMor(f) are inverses for the mappings on sentences as
well, up to the logical equivalence defined by the schemata. More precisely, for
any ϕ1 ∈ WFS(D1), Subst〈f, Subst〈RcMor(f), ϕ1〉〉 ≡D1 ϕ1, and for any ϕ2 ∈
WFS(D2), Subst〈RcMor(f), Subst〈f, ϕ2〉〉 ≡D1 ϕ2.

Unfortunately, there is no guarantee that RcMor(f) will be of the same class
as f . When it is, however, semantic bijectivity is guaranteed.

Proposition 4.15 (Semantic bijectivity ⇔ class C reconstruction). Let
f : D1 → D2 be a database morphism of class C whose underlying function
f : LDB(D1) → LDB(D2) is bijective. Then f is semantically bijective for C iff
RcMor(f) is of class C.

Proof. Let ϕ1 ∈ WFS(D1, C). If RcMor(f) is of class C, then there is a ϕ2 ∈
WFS(D2, C) such that Subst〈RcMor(f), ϕ1〉 ≡D2 ϕ2, and since Subst〈f,−〉 ◦
Subst〈RcMor(f),−〉 is the identity on WFS(D1), up to equivalence of ≡D1 ,
Subst〈f, ϕ2〉 ≡D1 ϕ1. Hence f is semantically surjective, and since it is semanti-
cally injective by Proposition 4.12, it is semantically bijective for C.

Conversely, if f is semantically bijective for C, then given ϕ1 ∈ WFS(D1, C),
there is a ϕ2 ∈ WFS(D2, C) such that Subst〈f, ϕ2〉 ≡D1 ϕ1. Since
Subst〈RcMor(f),−〉 ◦ Subst〈f,−〉 is the identity on WFS(D2), up to equivalence
of ≡D2 , it must be the case that Subst〈RcMor(f), ϕ1〉 ≡D2 ϕ2, whence RcMor(f)
is of class C. �

Example 4.16 (Semantic bijectivity and reconstruction morphisms).
It is clear from Proposition 4.15 that every bijective morphism is semantically bi-
jective for class 1; that is, when all first-order sentences are considered. However,
this is not a very useful property within the context of this work, since the set of
all first-order sentences on a schema is not information monotone except in trivial
cases. In particular, owing to a special property to be developed in Proposition
4.18, the choice C = ∃∧+ will yield the most fruitful results. It is therefore nec-
essary to establish useful conditions under which semantic bijectivity holds for
more restricted classes. To set the stage for this, some illustrative examples based
upon a set of four schemata are presented. Let E3 be the relational schema with
three unary relation symbols R31[A], R32[A], and R33[A], constrained by the sin-
gle sentence (∀x)(R33(x) ⇔ R31(x)∧R32(x)). In other words, the state of R33 is
the intersection of that of R31 and R32. Let E4 have a corresponding set of three
unary relation symbols R41[A], R42[A], and R43[A], but this time constrained
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by the single sentence (∀x)(R43(x) ⇔ ((R41(x)∧¬R42(x))∨(¬R42(x)∧R41(x)))).
In other words, the state of R43 is the symmetric difference of that of R41 and
R42. Define E5 to have the two unary symbols R51[A] and R52[A], with no other
constraints, and define E6 to have the two unary relation symbols R61[A] and
R63[A], again with no other constraints.

First of all, consider the morphism h3 : E3 → E5 which identifies R51 with R31

and R52 with R32. Formally, hR51
3 = R31(xA) and hR52

3 = R32(xA). It is trivial
that h3 is of class C for any C ∈ {∃
=, ∃+, ∃∧+,Atoms,1}. The reconstruction
mapping for h3 is g3 : E5 → E3 defined by gR31

3 = R51(xA), gR32
3 = R52(xA), and

gR33
3 = R51(xA)∧R52(xA). This morphism is of class C for C ∈ {∃
=, ∃+, ∃∧+,1},

but not for C = Atoms, since the interpretation formula for R33 is not equivalent
to any atomic formula. Consequently, h3 and g3 are semantic bijections for C ∈
{∃
=, ∃+, ∃∧+,1}.

Next, consider the morphism h4 : E4 → E5 which identifies R51 with R41 and
R52 with R42. Formally, hR51

4 = R31(xa) and hR52
4 = R32(xa). Just as was the

case for h3, this morphism h4 is is of class C for any C ∈ {∃
=, ∃+, ∃∧+,Atoms,1}.
The reconstruction mapping is g4 : E5 → E4 given by gR41

4 = R51(xA), hR42
4 =

R52(xA), and gR43
4 = (R51(xA)∧(¬R52(xA)))∨(R52(xA)∧(¬R51(xA))). This time,

amongst the possibilities C ∈ {∃
=, ∃+, ∃∧+,Atoms,1}, the reconstruction map-
ping g4 is of class C only for C = 1. The definition of gR43

4 excludes all other
possibilities.

A similar failure of the reconstruction morphism to be of classes other than
1 may occur even when the schemata themselves have no nontrivial constraints.
For example, let h5 : E5 → E6 be defined by hR61

5 = R51(xA) and hR63
5 =

(R51(xA)∧(¬R52(xA)))∨(R51(xA)∧(¬R51(xA))). In other words, R63 constrained
by the interpretation morphism to be the symmetric difference of R51 and R52. It
is easily seen that h5 is bijective on databases, with the reconstruction morphism
g5 : E6 → E5 defined by gR51

5 = R61(xA) and gR52
5 =

(R61(xA)∧(¬R63(xA)))∨(R63(xA)∧(¬R61(xA))). However, amongst the possibil-
ities C ∈ {∃
=, ∃+, ∃∧+,Atoms,1}, both h5 and g5 are of class C only for C = 1,
and so cannot possibly be semantically bijective for any other of the classes.

These examples suggest that for a morphism f : D1 → D2 which is bijective
on databases to fail to be semantically bijective, there must be some nonmono-
tonicity of information, either in the constraints of the domain schema D1, or
else in the interpretation formulas defined by the interpretation morphism itself.
That this is indeed the case, at least for certain common contexts, will now be
shown.

Definition 4.17 (Universal models). Traditional database dependencies
take the form of generalized universal-existential Horn clauses of the following
form.

(∀x1)(∀x2) . . . (∀xn)((A1∧A2∧ . . . ∧An)⇒ (∃y1)(∃y2) . . . (∃yr)(B1∧B2∧ . . .∧Bs))

The Ai’s and the Bi’s are atoms, but of course not ground atoms. indeed, the
quantified variables must occur in these atoms. There is a rich variety of alter-
natives; for a detailed taxonomy and comparison of properties consult [13].
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Given a set S of ground atoms, one may attempt to construct a least model
containing S by using so-called forward chaining — repeatedly unifying the left-
hand side (the Ai’s) with known facts (qua ground atoms) in S in order to
deduce new ones from the right-hand side (the Bi’s). The new facts are added
to S and the process is repeated until no new rules apply. This is a classical
form of inference for propositional Horn clauses [14]. It also applies to so-called
universal models the first-order case, but with some limitations. In its general
form, it has seen recent application in the context of data exchange [15] and
in the realization of canonical reflections for view updates which lie outside of
the scope of constant complement [5]. The process is, in turn, based upon the
classical chase inference procedure [16].

There are a few complications relative to the propositional setting. First of all,
it may be necessary to generate “generic” constants, because of the existential
quantifiers, so the least model may only be unique up to a suitable renaming of
such constants. Second, the process may not always terminate, but rather con-
tinue endlessly to generate new tuples [15, Example 3.6] [5, 4.14]. Nevertheless,
there are wide classes of constraints for which the procedure is known to ter-
minate. One possibility is to work with full dependencies which do not involve
any existential quantification. A broader solution is to work with the so-called
weakly acyclic tuple-generating dependencies (tgds), together with the classical
equality-generating dependencies (egds) [15, Thm. 3.9].

When they exist, such universal models have a simple characterization [5, Sec.
3] [15, Sec. 3.1]. An endomorphism on D is a function h : Const(D) → Const(D)
which preserves attribute types, in the precise sense that for each A ∈ AD and
each a ∈ ConstD(A), h(a) ∈ ConstD(A). If h is additionally a bijection, then it is
called an automorphism ofD. For S ⊆ Const(D), call h S-invariant if h(a) = a for
all a ∈ S. Given a database schema D, an endomorphism onD induces a mapping
from GrAtoms(D) to itself given by sending t ∈ GrAtoms(D) to the tuple t′ with
t′[RName] = t[RName] and t′[A] = t[h(A)] for all A ∈ Art[RName] . This mapping
on atoms is also represented by h, as will the induced mapping from DB(D) to
itself given by M &→ {h(t) | t ∈ M}. h(M) is called an endomorphic image of
M . Given Φ ⊆ WFS(D), an M ∈ DB(D) is a universal model for Ψ if every
M ∈ AtModI(Ψ) is a superset of an endomorphic image of M .

Say that D admits universal models if M ∪ Constr(D) admits a universal
model for every M ∈ DB(D) which extends to a model; i.e., for which there
exists an M ′ ∈ LDB(D) with M ⊆M ′.

In the context of database constraints, such universal models may be gen-
erated using the inference procedure described above [15, Sec. 3.1], provided
the procedure terminates. In particular, the combination of weakly acyclic tgds
and all egds noted above has this property. The following result thus provides a
rich class of base schemata which imply semantic bijectivity for ∃∧+ when the
underlying function is bijective.

Proposition 4.18 (Universal models ⇒ semantic bijectivity). Let f :
D1 → D2 be a database morphism of class ∃∧+ whose underlying function
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f : LDB(D1) → LDB(D2) is bijective. If D1 admits universal models, then f is
semantically bijective for ∃∧+.

Proof outline: Space limitations preclude a detailed proof, but it is easy to
sketch the main idea. Let ϕ1 ∈ WFS(D1, ∃∧+). The basic strategy is to Skolem-
ize ϕ1 into a set G of ground atoms by replacing each existentially-quantified
variable by a distinct new constant not appearing in Constr(D), and to generate
a universal model M ∈ LDB(D1) for G. Next, map M to f(M) ∈ LDB(D2) and
reverse the process. Represent f(M) as a sentence ϕ′

2 which is the conjunction of
the atoms in f(M), and then “un-Skolemize” ϕ′

2 by replacing all constants which
were not in the original ϕ1 or in Constr(D) by existentially quantified variables.
Call the resulting formula ϕ2. It is not difficult to see that Subst〈f, ϕ2〉 ≡D1 ϕ1,
from which the result follows. �

In the context of Example 4.16 above, note that for E4 the constraint
(∀x)(T4(x) ⇔ ((R4(x)∧¬S4(x))∨(¬S1(x)∧R4(x)))) is not a dependency of the
(∀)(∃)-Horn variety, and does not admit universal models. On the other hand, the
alternative (∀x)(T3(x) ⇔ R3(x)∧S3(x)) for E3 is in fact representable as as set of
three tgds: (∀x)(T3(x) ⇒ R3(x)), (∀x)(T3(x) ⇒ S3(x)), and
(∀x)((R3(x)∧S3(x)) ⇒ T3(x)), and so does admit universal models by [15, Thm.
3.9]. Thus, the assertion of the above proposition is confirmed by this example.

Definition 4.19 (Update difference and optimal reflections). The up-
date difference of an update (M1,M2) on D with respect to a set Σ ⊆ WFS(D)
is a measure of how muchM1 andM2 differ in terms of their information content
relative to Σ. Formally, the positive (∆+), negative (∆−), and total (∆) update
differences of (M1,M2) with respect to Σ are defined as follows:

∆+〈(M1,M2), Σ〉 = Info〈M2, Σ〉 \ Info〈M1, Σ〉
∆−〈(M1,M2), Σ〉 = Info〈M1, Σ〉 \ Info〈M2, Σ〉
∆〈(M1,M2), Σ〉 = ∆+〈(M1,M2), Σ〉 ∪∆−〈(M1,M2), Σ〉

Given ϕ ∈ ∆〈(M1,M2), Σ〉, it is always possible to determine whether ϕ ∈
∆+〈(M1,M2), Σ〉 or ϕ ∈ ∆−〈(M1,M2), Σ〉 by checking whether or not M1 ∈
AtModI(ϕ).

For an update request (M1, N2) from Γ to D, the quality of a realization
(M1,M2) is measured by its update difference, with an optimal realization one
which entails the least change of information. Formally, let Σ ⊆ WFS(D), let
(M1, N2) be an update request along Γ , and let (M1,M2) ∈
UpdRealiz〈M1, N2, Γ 〉. The pair (M1,M2) is optimal with respect to Σ if for
all (M1,M

′
2) ∈ UpdRealiz〈M1, N2, Γ 〉, ∆〈(M1,M2), Σ〉 ⊆ ∆〈(M1,M

′
2), Σ〉.

The definition of optimal which is used here is slightly different than that
of [5, 3.5], in which optimality also requires minimality of update difference
with respect to GrAtoms(D). That additional condition was necessary because
the main information measure was not required to be separating. Here, the
separating condition effectively provides the additional minimality.
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Lemma 4.20 (Distance preservation under semantic bijection). Let
f : D1 → D2 be a semantic bijection of class C, and M1,M2,M3 ∈ LDB(D1).
Then

∆〈(M1,M2),WFF(D1, C)〉 ⊆ ∆〈(M1,M3),WFF(D1, C)〉
iff ∆〈(f(M1), f(M2)),WFF(D2, C)〉 ⊆ ∆〈(f(M1), f(M3)),WFF(D2, C)〉.

Proof. The proof follows directly from the bijective correspondence between (se-
mantic equivalence classes of) sentences in WFF(D1, C) and those in
WFF(D2, C), as established in Observation 4.13. �

Lemma 4.21. If the views Γ1 = (V1, γ1) and Γ2 = (V2, γ2) are of class C, then
so too is Γ1

∐
Γ2.

Proof. This follows from the definition (Definition 4.8(b)), since the set of inter-
pretation functions for V1

∐
V2 into D is simply the (disjoint) union of those

for γ1 and for γ2. �

The definition of complementary views Definition 3.5 is extended to the C context
in the following fashion.

Definition 4.22 (C-complementary pairs). The set {Γ1, Γ2} of views is
said to be a C-complementary pair if each view is of class C and, in addition, the
morphism γ1

∐
γ2 : D → V1

∐
V2 is semantically bijective for C.

Finally, it is possible to establish the main result of this paper.

Theorem 4.23. Let {Γ1 = (V1, γ1), Γ2 = (V2, γ2)} be a C-complementary pair
and let (M1, N1) be an update request from Γ1 to D. If the Γ2-constant realization
of (M1, N1) along Γ1 exists, it is optimal with respect to WFS(D, C).

Proof. Let M2 ∈ LDB(D) be the unique database for which (M1,M2) is the
Γ2 constant realization of (M1, N1); thus, (γ1

∐
γ2)(M2) = (N1, γ2(M1)). Let

M3 ∈ LDB(D) be any database for which γ1(M3) = N ′
1; thus, (M1,M3) is an

arbitrary realization of the update request (M1, N
′
1). The update in V1

∐
V2 cor-

responding to (M1,M2) under γ1
∐
γ2 is u = ((γ1(M1)'γ2(M1)), (N1'γ2(M1))),

while for (M1,M3) it is u′ = ((γ1(M1) ' γ2(M1)), (N1 ' γ2(M3))). Clearly
∆〈u,WFS(V1

∐
V2, C)〉 ⊆ ∆〈u′,WFS(V1

∐
V2, C)〉, and so in view of Lemma

4.20 and Lemma 4.21, ∆〈(M1,M2),WFF(D, C)〉 ⊆ ∆〈(M1,M3),WFF(D, C)〉 as
well. Hence (M1,M2) is optimal, as required. �

Corollary 4.24 (Global uniqueness of constant-complement updates).
Let {Γ1, Γ2} and {Γ1, Γ

′
2} be C-complementary pairs, and let

(M1, N2) be an update request from Γ1 to D. If (M1, N2) has both a Γ2-constant
realization and a Γ ′

2-constant realization, then these two realizations are identical.
In other words, a constant-complement realization of an update is independent
of the choice of complement, as long as the complementary pair is C-compatible.

Proof. By construction, an optimal reflection is unique, and so the result follows
from Theorem 4.23. �
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Corollary 4.25 (Universal solutions imply global uniqueness for C =
∃∧+). Assume that D admits universal solutions, let Γ1 be any view of D
which is of class ∃∧+, and let (M1, N2) be an update request from Γ1 to D.
Then for all views Γ2 of class ∃∧+ which are complements of Γ1 and for which
the Γ2-constant translation of (M1, N1) exists, these translations are identical.

Proof. The proof follows directly from Proposition 4.18 andCorollary 4.24. �

Example 4.26. To begin, consider an example which was introduced in [17,
1.1.1] as motivation for the need to consider restrictions on the nature of “good”
complements. It recaptures ideas similar to those found in E4 of Example 4.16,
but in the context of three views, each of which contains one unary relation
symbol. Let E7 have two relation symbols R71[A] and R72[A], with no constraints
other than those imposed by the relational context D. Let Ω7i = (W7i, ω7i) for
i ∈ {1, 2} be the view which retains R7i but discards R7(3−i). R7i[A] is thus the
sole relation symbol for W7i. In each case, the interpretation formula ωR7i

7i is the
identity on R7i, and so the coproduct morphism ω71

∐
ω72 is also an identity

and trivially semantically bijective for any reasonable choice for C. The pair
{Ω71, Ω72} is as well behaved as can be, and C-complementary. Now consider
a third view Ω73 = (W73, ω73) which has the single relation symbol R73[A],
defined by the formula ωR73

73 = (R71(xA)∧¬R72(xA)∨(¬R71(xA)∧R72(xA)). In
other words, the value for R3 is the symmetric difference of those for R71 and R72.
It is easy to see that any set of two of these three views forms a complementary
pair, but the two pairs which contain Ω73 are not C-complementary for C ∈
{∃
=, ∃+, ∃∧+,Atoms}. The interpretation ωR3

73 involves negation and so Ω73 can
never be of class C for any C which renders WFS(E7, C) information monotone.
Thus, this “undesirable” complement is excluded by the theory. In this example,
the schema E7 admits universal solutions, but the morphism ω7i

∐
ω23 is not of

class C for i ∈ {1, 2}, and so Corollary 4.25 is not applicable.
As a slight variation, reconsider the schema E4 of Example 4.16, this time

with the three views Ω4i = (W4i, ω4i), with Ω4i for i ∈ {1, 2, 3} the view which
retains R4i but discards the other two relations. Each view morphism ω4i is
very well behaved; each is semantically surjective for any choice of C listed in
Definition 2.4. Furthermore, it is easy to see that any two of these views forms a
complementary pair. However, by an argument virtually identical to that already
given in Example 4.16, for any pair of these views, the reconstruction morphism
cannot be of class C, since including R43 in the view forces a symmetric difference
interpretation. In this case, the each view morphism of the form ω4i

∐
ω4j is of

class C, but the constraints of the main schema E4 do not allow the reconstruction
to be of class C for any reasonable choice.

Example 4.27 (Comparison to the order-view approach). Upon com-
paring Corollary 4.24 of this paper to [3, 4.3], two key differences are apparent.
On the one hand, the theory of [3] requires order complements, which is based
upon the order structure on the states of the schemata and has nothing what-
ever to do with logic or the relational model, while the theory presented here
requires C-complements, which are logic based. Although a detailed study has
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not been made, partly because the theory of [3] is limited to so-called meet com-
plements, it does appear the notion of order complement is strictly more general
than that of a C-complement. On the other hand, the uniqueness theory of [3]
is limited to order-realizable updates; that is, updates which can be realized as
sequences of legal insertions and deletions. The theory of this paper imposes no
such limitation.

To illustrate this advantage, consider the schema E8 which has the single
relation symbol R[ABC], constrained by the functional dependencies B → C
and B → A. The two views are ΠE8

AB and ΠE8
BC , the projections onto AB and

BC respectively. Both of these are order views; the associated mappings on
database states are open poset morphisms. Thus, the result [3, 4.3] applies,
but only to order-realizable updates, of which there are none for ΠE8

AB. More
precisely, the only possible updates on ΠE8

AB are those which change the A-value
of a given tuple, and none of those is an order-realizable update, so that theory
does not address this situation in a systematic way [3, 4.6]. On the other hand,
the theory of this paper imposes no such restriction to order-realizable updates.
Since the coproduct ΠE8

AB

∐
ΠE8

BC is easily seen to be semantically bijective for
any reasonable choice for C (the reconstruction map is the join), allΠE8

BC -constant
updates on ΠE8

AB are allowed.

5 Conclusions and Further Directions

The constant-complement update strategy for views has been examined from
the point of view of information content. Specifically, in this approach, the de-
composition mapping for the pair of views is required not only to be bijective on
states but also on the sentences which define the information content of the com-
ponent views. From this perspective, it has been shown that under very broad
conditions, the translation of the view update is independent of the choice of
complement. In particular, in a traditional database context — well-behaved de-
pendencies and view mappings defined by conjunctive queries — the translation
never depends upon the choice of complement.

Further investigations are appropriate for the following topics.

Extension to other logical models The theory presented here is couched
squarely within the classical relational model. In principle, it applies as well
to other models which admit a first-order logical formalism, such as the nested
relational model [6, Ch. 7] and the Higher-Order Entity-Relationship Model
(HERM) [18]. However, the extent to which the cornerstone ideas such as iden-
tifying a suitable class C or characterizing semantic bijectivity via universal
models translate to realistic data modelling within those frameworks requires
further investigation.

Rapprochement with the order-based approach The order-based framework for
the constant-complement approach, as reported in [3], has the great advantage
that it is not tied to a particular data model. Rather, schemata are modelled
as ordered sets and view mappings as poset morphisms. While the framework
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presented here is much more specific, being limited to the relational model, it
also supports a broader result which is not limited to order-realizable updates.
Each approach has its advantages and disadvantages. A rapprochement of the
two appears to be a fruitful topic for future investigation. In particular, it
would be interesting to identify the extent to which the ideas of this paper
can be recast without the specific need for an underlying logic. In this regard,
element-based variations of the order-based model, such as that employed in
[19], would perhaps form the foundation for a fruitful common ground.

Information morphisms and the inversion of schema mappings Recently, there
have been significant advances in the theory of data exchange and inversion
of schema mappings [15] [20]. Although these topics have nothing to do with
constant-complement updates, the ideas of information content, and in particu-
lar the idea of characterizing database morphisms not by how they map models
but rather how they map sentences might prove useful in understanding and
characterizing such operations.
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Abstract. The problem of answering queries using views is concerned
with finding answers to a query using only answers to views. In data in-
tegration context with the Local-As-Views approach, this problem trans-
lates to finding maximally contained rewriting for a given query. Existing
solutions follow a bottom-up approach and, for efficiency reason, often
require a post-processing phase, which comes at an additional cost.

We propose a solution which follows a top-down approach. For this,
we first present a graph-based model for conjunctive queries and views,
and identify conditions that if satisfied ensures maximality of a rewrit-
ing. Using this model as a basis, we then introduce a novel top-down
algorithm, TreeWise, which efficiently generates maximally contained
rewritings which are in general less expensive to evaluate, compared to
the bottom-up algorithms, without requiring post-processing. The pre-
liminary results of our experiments indicate that while TreeWise has
comparable performance, it generally produces better quality rewritings.

1 Introduction

A variety of data-management applications deal with the problem of answer-
ing queries using views. Examples include query optimizations, physical data
independence, data-warehousing and data integration systems [Lev01]. This
problem, also referred to as rewriting query using views, is described as follows:
given a query and a set of views over the same database schema, is it possible
to find the answers to the query using only answers to the views?

We are interested in the rewriting problem in two contexts. In the context of
query optimization and physical data independence [CS95], the goal is to find
the rewritings that are equivalent to the original query. In the context of data
integration, since finding equivalent rewritings is not always possible, the goal is
to find maximally contained rewritings for a given query. We study the problem
of answering queries using views following in the context of the LAV-approach in
data integration where query as well as views are standard conjunctive queries.
Furthermore, in this context we assume that data sources may be incomplete,
i.e., they may be missing tuples that satisfy their definitions. This is referred to
as the Open-World-Assumption (OWA). There are two challenges in developing
algorithms in this context: (1) scalability as the number of views increases, and
(2) quality of rewritings generated by the algorithm in terms of cost of evaluation.

K.-D. Schewe and B. Thalheim (Eds.): SDKB 2008, LNCS 4925, pp. 180–198, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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There are three main algorithms proposed in the literature for producing
maximally-contained rewritings in data integration context. These are the Bucket
algorithm [LRO96a, LRO96b], inverse-rules [Dus97, Qia96], and the Minicon
algorithm [PL00]. In [PL00] authors study the performance limitations of the
Bucket and inverse-rule algorithms and showed that Minicon significantly out-
performs the two. However, little attention has been paid to the quality of rewrit-
ings generated. Following [LMSS95], we consider the quality of a query to be
determined by the cost of its evaluation. All three algorithms employ a bottom-
up approach to rewriting, i.e., they examine how each subgoal in the body of the
query can be covered by some view in the rewriting. This may result in rewrit-
ings that have large number of subgoals in the bodies, and hence expensive to
evaluate. To solve this problem, both bucket [LRO96a] and Minicon [PL00]
propose post-processing steps, at additional cost, for reducing the size of gener-
ated rewritings. Our motivation in this work is to explore this problem taking
a top-down approach in which, instead of using a view to cover a subgoal of
the query, we consider the maximum number of subgoals the view can cover.
We provide a graph-based view as a basis to represent the query and views and
use it to develop a new rewriting algorithm, called TreeWise, which improves
existing algorithms in some aspects. In particular, each rule in a rewriting gen-
erated would have less number of subgoals in the body without post-processing,
confirmed by preliminary results of our experiments.

The outline of this paper is as follows. Section 2 provides a background. Sec-
tion 3 presents HMCQ, a hyper-node model for conjunctive queries. In Section
4, we study this model and its connection to rewriting together with conditions
that should be satisfied for a contained rewriting to be maximal. This provides
a basis for the development of TreeWise algorithm, described in Section 5. A
summary of our preliminary experimental results is provided in Section 6. He
final section include concluding remarks and future work.

2 Preliminaries

In data integration systems implemented with the Local-As-Views (LAV) ap-
proach (e.g., Information Manifold [LRO96b]), source descriptions are defined
as views over the mediated schema [Len02]. In this context, the task of answering
user’s query corresponds to reformulating the original query into a query which
only refers to the set of views defined over the mediated schema. Also, in this
context, views are not assumed to be complete and they may be missing tuples
that satisfy their definitions. Hence, Open-World Assumption (OWA) [AD98]
is considered. In this paper, we focus on query and views that are in the form of
conjunctive queries, defined as follows.

Definition 1. (Standard Conjunctive Query) A conjunctive query Q is a non-
recursive datalog rule of the form:

q(X) : − p1(X1), . . . , pn(Xn)

where q and p1, . . . , pn are predicate names, q(X) is the head, and
p1(X1), . . . , pn(Xn) is the body which is a conjunction of atoms, each of which is
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called a subgoal. Each arguments in the predicates could be either a variable or
constant. The variables in the head arguments X are called distinguished; other
variables are called existential. Union of conjunctive queries is expressed as a
set of conjunctive queries with the same head predicate. We denote by Q(D), the
set of tuples obtained by evaluating Q over the input database D.

To compare the answers of two conjunctive queries for any input database, we
use the notion of containment. Next, we recall definition of query containment
and its necessary and sufficient condition, namely the containment mapping
[CM77].

Definition 2. (Containment Mapping) Given two standard conjunctive queries
Q1 and Q2, a c.m. ρ from Q2 to Q1, denoted by ρ : Q2 → Q1, is a symbol
mapping which is identity on the constants and predicate names such that (1)
head(Q1) = ρ(head(Q2)), and (2) ρ(body(Q2)) ⊆ body(Q1). Here ρ(head(Q))
and ρ(body(Q)) represent, respectively, the head and body of Q after applying ρ.

We say query Q1 is contained in Q2, denoted by Q1 � Q2, iff there exists
a containment mapping from Q2 to Q1. Next, we define reformulation of the
query also known as rewriting.

Definition 3. (Rewriting) Given a query Q and a set of view definitions V =
{V1, . . . , Vn}, a rewriting of Q using the views in V is a query R whose ordinary
subgoals are all from V .

Since finding all answers to a query in a data integration system is not always
possible, contained rewritings are the best we can hope for. In this case, we
need to determine a rewriting that returns best possible set of answers to the
query. This rewriting is called maximally contained rewriting, and is a language
dependent notion.

Definition 4. (Maximally Contained Rewriting) Given a language L, query Q,
and a set of view definitions V = {V1, . . . , Vn}, a query R is a Maximally con-
tained (MC) rewriting of Q using V with respect to L if:

1. R is expressed in L and R � Q.
2. R′ � R, for each contained rewriting R′ of Q using V , where R′ is expressed

in L.

In [CM77], the problem of containment for conjunctive queries is shown to
be NP-complete. In [LMSS95], authors show that the rewriting problem for
standard conjunctive queries is NP-complete. Furthermore, it was shown that
when query and views are standard conjunctive queries, maximally contained
rewriting exists in a form of the union of standard conjunctive queries, where
the number of subgoals in each rewriting query in this union will be no more
than the number of ordinary subgoals in the original query [LMSS95].
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3 Hyper-Node Model for Conjunctive Queries (HMCQ)

We now propose a graph-based model to represent conjunctive queries. We will
later use this model to formalize the conditions that must be satisfied in our
top-down approach to ensure maximal containment of rewriting. The hyper-node
model is a graph-based approach proposed in [LP90] intended for representing
data models in general, in which nodes can themselves be hyper-nodes . We
adopt this model in our work and extend it to Hyper-node Model for Conjunctive
Queries (HMCQ).

A conjunctive query in HMCQ is a super-graph which consists of four graphs,
each representing a level of abstraction. The lowest level in this representation
captures relationships among the attributes in the query and possibly equality
constraints (i.e., joins) among the attributes. Predicates in the query are rep-
resented as hyper-nodes in the second level. The two next levels in HMCQ are
used to represent the head of the query.

Let Q be a standard conjunctive query. In HMCQ, Q can be represented using
a super-graph called GQ, which contains the following four graphs.

Definition 5. (Attributes-graph). The attributes-graph of Q denoted as GA =
(VA, EA) is an undirected, node-labeled graph that has the following properties:

1. VA is the set of constants and variables in the body of Q. There is a sep-
arate node for each occurrence of an attribute in each predicate regardless
of attribute distinctness. This set can be divided into three subsets Vhc, Vd,
and Ve. Vhc includes all the nodes representing constants in the head of Q.
Vd contains nodes for distinguished variables and Ve represents the existen-
tial attributes in Q. Ve itself is further divided into two disjoint subsets: Vev

includes existential variables and Vec includes the constants.
2. Set EA contains the edges between nodes in VA representing equality rela-

tionships among variables in Q. E = Ed ∪ Ee, where Ed includes the edges
between nodes of Vd, and Ee represents the edges between the nodes in Vev .

3. Node labels are used to represent orders at different levels of super-graph GQ.
Labeling is performed in such a manner that the node representing attribute
’A’ in the jth position in predicate pi would be labeled (i, j, k, val), where
i ≥ 0 is called the predicate-index, which is the unique identifier assigned
to predicate pi in predicates-graph of Q, k is a set called the head-index
representing the positions of ’A’ in the head of Q. The value of k is 0 for
elements in Ve. Finally, val is the value-index, representing the value of the
constant nodes in Vec. Naturally val is empty for the variable nodes.

Definition 6. (Predicates-graph). The predicates-graph GP of Q denoted as
GP = (VP , EP ) is an undirected, node-labeled, edgeless graph with the follow-
ing properties:

1. VP is a set of hyper-nodes, each of which representing a predicate pi in the
body of Q and each containing a set of nodes from the graph GA, representing
the arguments of pi in Q.
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2. For the hyper-node representing predicate pi in Q, we use (i, name) as the
label, where i ≥ 0 is a unique identifier assigned to predicate pi indicating
the ith subgoal in the body, and ”name” is the predicate name.

Definition 7. (Head-variables-graph). This graph of Q, denoted as GHV =
(VHV , EHV ), is an undirected, edgeless graph, where VHV is a set of hyper-nodes,
each of which representing an attribute of the head predicate. Each element in
this set is either a distinguished variable or a constant. Therefore VHV contains
either a connected component from Vd or an element in set Vhc of graph GA.

Definition 8. (Head-graph). The head-graph of Q, denoted as GH = (VH , EH),
is an undirected, edgeless graph, where VH is a set which contains a hyper-node
representing the head predicate of the conjunctive query. This hyper-node itself
contains all the hyper-nodes of graph GHV .

Since the essential information of GH and GHV are captured in labeling of the
attribute-nodes, for the sake of clarity, we sometimes omit these graphs from our
representations in HMCQ.

Example 1. Consider the following conjunctive queries:
Q1(X,Y, Z) : − p(X,Y, Z), r(X,U, V ).
Q2(X,Y, Z) : − p(X,Y,X), r(X,Y, Z).

In the HMCQ model, Q1 and Q2 can be represented as shown in Fig. 1. In the
graph of Q1, hyper-nodes of the head-variables graph and head-graph are shown,
however in the graph of Q2, these are omitted for sake of clarity. If an attribute
node does not belong to more than one head variable in the head-variables-graph
of the query, we can use an integer index to represent its position in the head in
its label instead of a set of integers. This is followed in the graph of Q2.

It is noteworthy that related concepts such as containment-mapping, contain-
ment, and rewriting queries, and unfolding technique have corresponding defini-
tions in the HMCQ model. However, due to space limitations, we suppress some

Fig. 1. Graphs of queries Q1 and Q2 for Example 1
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details in this work. Also, for every standard conjunctive query Q, there exists a
unique super-graph GQ in HMCQ representing Q. We use Graph(Q) to denote
a function which returns this unique graph GQ of Q. Interestingly, this function
is 1-1 (trivial variable renaming may be needed) and therefore Graph−1(GQ)
returns Q.

4 A Top-Down Approach to Rewriting Using HMCQ

Using the HMCQ model, in this section we present a top-down approach to gen-
erate rewriting for standard case of conjunctive query and views. We study the
conditions that must be satisfied by HMCQ to ensure maximality of rewriting.

Our top-down approach to the rewriting problem includes the following three
phases: establishing consistent partial mappings from the query to each view,
examining partial mappings to ensure maximality of rewriting, and finally com-
bining the partial mappings properly to generate maximally contained rewriting
in the form of union of standard conjunctive queries. For ease of exposition and
also conforming to Minicon description in [PL00], we assume the query and
views do not include constant arguments. Details of these phases are described
as follows.

4.1 Generating Partial Mappings

In the first phase of our top-down approach, we examine each view Vi, in iso-
lation, and construct a set of consistent partial mappings from the query to
Vi, each of which covering maximal number of subgoals of the query. Next, we
discuss the details of this phase using the HMCQ model.

Let GQ be the super-graph representing the query Q, and GVi be the one
representing a view in the set V of views. In general, a desired partial mapping
must satisfy the following four conditions to ensure containment and maximality
of a rewriting: (1) head-unification, (2) join-recoverability, (3) partial-mapping-
consistency, and (4) partial-mapping-maximality.

The first three conditions above govern consistency of the mappings and con-
tainment of each rewriting query rj induced by them. The last condition ensures
maximality of a rewriting induced by these partial mappings. We next describe
these conditions for a partial mapping µj in the HMCQ model. In the following
conditions, Dµj is a set representing the domain of µj .

Head-unification condition: Testing this condition is straightforward. To sat-
isfy this condition in HMCQ for a partial mapping µj from GQ to GVi , the
following must hold:

∀nk ∈ (Vd)Q : nk ∈ Dµj ⇒ µj(nk) ∈ (Vd)Vi (1)

The above indicates that if a distinguished node in GQ is mapped to an ex-
istential node in GVi , this condition is violated. This is also consistent with
the definition of containment mapping, which implied that all the distinguished
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variables of the containing query (Q) must be mapped only to the distinguished
variables in the containee (e.g. a rewriting query r).

Join-recoverability condition: The following must hold for all existential
edges e =< nk, nk′ > in (Ee)Q in order to satisfy this condition:

∀e =< nk, nk′ >∈ (Ee)Q :
(nk ∈ Dµj ∧ nk′ /∈ Dµj ) ⇒ µj(nk) ∈ (Vd)Vi

(2)

This condition focuses on the existential edges in the attributes-graph of GQ,
where one of the nodes, but not both, is in the domain of µj . In order to satisfy
this condition, the node in the domain of µj must be mapped to a distinguished
node in GVi .

Partial-mapping-consistency condition: Let H be a subset of all possible
edges that can be created between distinguished nodes in attributes-graph of
the view Vi, that is H ⊆ (Vd)Vi × (Vd)Vi . To satisfy partial-mapping-consistency
condition, the following must hold for µj :

∃H : ∀ < nk, nk′ >∈ (EA)Q :
nk, nk′ ∈ Dµj ⇒< µj(nk), µj(nk′) >∈ (H ∪ (EA)Vi)

(3)

Here, we are concerned with every edge < nk, nk′ > in GQ connecting the nodes
that both are in the domain of µj . To satisfy this condition, mapping of all such
edges must either exist in GVi or can be created in the graph of the view. In
case both µj(nk) and µ(nk′) are in (Ve)Vi , presence of edge < µj(nk), µj(nk′ ) >
in (Ee)Vi indicates that there is a dependency between the hyper-nodes pn and
pn′ with respect to µj , where nk ∈ pn and nk′ ∈ pn′ . That is, removal of the
attributes of any one (but not both) of these predicates from domain of µj will
cause violation of join-recoverability condition (condition 2) by the attribute
nodes of the other predicate.

Example 2. Consider the following query and views:
Q(X,Y,W ) : − p(X,Y, Z), r(Z,U, U), s(W,Y ).
V 1(A,B,D,E, F ) : − p(A,B,C), r(C,D,A), s(E,F ).
V 2(A,B,D) : − p(A,B,C), s(A,D).

Fig. 2 shows the super-graphs of Q, V 1, and V 2. The only maximal mapping
from GQ to GV 1 is µ1 = {(0, 1, 1) → (0, 1, 1), (0, 2, 2) → (0, 2, 2), (0, 3, 0) →
(0, 3, 0), (1, 1, 0) → (1, 1, 0), (1, 2, 0) → (1, 2, 3), (1, 3, 0) → (1, 3, 1), (2, 1, 3) →
(2, 1, 4), (2, 2, 2)→ (2, 2, 5)}

This mapping covers the hyper-nodes {(0, p), (1, r), (2, s)} in GQ. We now
check µ1 for the above three conditions.

– head-unification: The subset of (Vd)Q in the domain of µ1 is {(0, 1, 1), (0, 2, 2),
(2, 1, 3), (2, 1, 3), (2, 2, 2)}. Since every node in this set is mapped to an ele-
ment in (Vd)V 1, none of the mappings violate head-unification condition.

– join-recoverability: Since all the nodes in set, (Ee)Q = {< (0, 3, 0), (1, 1, 0) >,
< (1, 2, 0), (1, 3, 0) >} are in the domain of µ1, this condition is satisfied.

– partial-mapping-consistency: For the set (EA)Q = {< (0, 3, 0), (1, 1, 0) >,
< (1, 2, 0), (1, 3, 0), < (0, 2, 2), (2, 2, 2) >}, we have the following:
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Fig. 2. Super-graphs of Q, V1, and V2 in Example 2

• according to µ1, the source and destination nodes of edge
< (0, 3, 0), (1, 1, 0) > are mapped to (0, 3, 0) and (1, 1, 0), respectively.
Since both of these nodes belong to set (Ve)V 1, the edge
< (0, 3, 0), (1, 1, 0) > must be in (Ee)V 1, which is indeed true. Addition-
ally, this edge creates a dependency, in the context of µ1, between the
hyper-nodes (0, p) and (1, r) of GQ for µ1.

• according to µ1, the nodes of edge e =< (1, 2, 0), (1, 3, 0) > are mapped
to (1, 2, 3) and (1, 3, 1) respectively, both of which belong to set (Vd)V 1.
The edge e can thus be added to set H , and therefore condition 3 is not
violated.

• Since edge < (0, 2, 2), (2, 2, 2) > belongs to (Ed)Q, according to condition
1, both nodes of this edge will be mapped to distinguished nodes in
(Vd)V 1. These nodes are mapped to (0, 2, 2) and (2, 2, 5), respectively.
The edge does not exist in (Ed)V 1, but it can be added and therefore
condition 3 is not violated.

At this point, the first three conditions are satisfied in the mapping µ1. Similarly,
for V 2 we have the partial mapping µ′1 = {0, 1, 1)→ (0, 1, 1), (0, 2, 2)→ (0, 2, 2),
(0, 3, 0) → (0, 3, 0), (2, 1, 3) → (1, 1, 1), (2, 2, 2) → (1, 2, 3)}, which also satisfies
all three conditions mentioned above and covers the set {(0, p), (2, s)} from GQ.

Lemma 1. Let Q be a query and V be a set of views all in the standard conjunc-
tive form. Let T be the set of partial mappings from the super-graph GQ to those
for views, and GR be the rewriting induced by T . If the query Graph−1(GR) is
contained in Q, then every element in T satisfies head-unification,
join-recoverability, and partial-mapping-consistency conditions. �

Partial-mapping-maximality condition: In order to ensure that a partial
mapping µj would produce maximally contained rewriting, we need to closely
examine the edges between the attributes of the view in the range of µj . This is to
ensure that no extra constraints are added to the rewriting unless it is necessary.
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It was mentioned earlier that the partial-mapping-consistency condition may
sometimes create dependencies between predicates of the query that are in the
domain of µj . As a result, the hyper-nodes in the predicates-graph of query in
domain of µj are partitioned into a set of connected components, where the
predicates in each component can not be removed from the mapping without
violation of the join-recoverability condition by the remaining predicates of that
component. We refer to this set of connected components in the domain of µj

as Cµj . Before describing this condition, we introduce a few concepts in HMCQ,
used in our formalization.

– Pred(GQ, n) is a function from (VA)Q to (VP )Q, which returns for each node
n ∈ (VA)Q the hyper-node p ∈ (VP )Q, where n ∈ p.

– For partial mapping µj , we use µ−1
j to denote the inverse of µj , defined in

the usual way.
– Comp(Cµj , p) is a function which returns the component c in Cµj to which

the predicate hyper-node p belongs.

For Partial-mapping-maximality condition we focus on the set of edges that a
view GVi enforces on to the attribute nodes of GQ induced by a mapping µj .
This set of edges is formalized as follows:

Definition 9. Let S be the set of all edges that are enforced by GVi through the
partial mapping µj. This set includes the following elements:

– The collection of sets µ−1
j (ek), for every edge ek =< n, n′ >∈ (EA)Vi where

both n and n′ are in the range of µj. Note the abuse of notation: we use
µ−1

j (ek) to refer to all possible edges between sets µ−1
j (n) and µ−1

j (n′) for
ek =< n, n′ >.

– For set P of predicate hyper-nodes in GQ that are mapped to the same pred-
icate hyper-node pk′ of GVi , edges created between every pair of nodes from
set P that have the same position-index in their labels.

Using S and also considering the set of components Cµj ,
partial-mapping-maximality is satisfied if the following condition holds:

∀ < nk, nk′ >∈ S : Comp(Cµj , P red(GQ, nk)) 
= Comp(Cµj , P red(GQ, nk′))
⇒ < nk, nk′ >∈ (EA)Q

(4)
The above indicates that for each edge < nk, nk′ > in S, where predicates for the
nodes of the edges do not belong to the same components in Cµj , if < nk, nk′ >
is not in (EA)Q, then this condition is violated.

Example 3. Consider the partial mappings µ1 and µ′1 for the query and views in
Example 2. We now can test these two mapping for partial-mapping-maximality.
For µ1 = {(0, 1, 1) → (0, 1, 1), (0, 2, 2) → (0, 2, 2), (0, 3, 0) → (0, 3, 0), (1, 1, 0) →
(1, 1, 0), (1, 2, 0) → (1, 2, 3), (1, 3, 0) → (1, 3, 1), (2, 1, 3) → (2, 1, 4), (2, 2, 2) →
(2, 2, 5)}, we have Sµ1 = {< (0, 1, 1), (1, 3, 0) >,< (0, 3, 0), (1, 1, 0) >} and
Cµ1 = {{(0, p), (1, r)}, {(2, s)}}. It can be seen, < (0, 1, 1), (1, 3, 0) > is the
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only edge in S that is not present in (EA)Q. However, since Comp(Cµ1 , (0, p)) =
Comp(Cµ1 , (1, r)), condition 4 is not violated by µ1.

Now let us consider the mapping µ′1 = {(0, 1, 1)→ (0, 1, 1), (0, 2, 2)→ (0, 2, 2),
(0, 3, 0)→ (0, 3, 0), (2, 1, 3)→ (1, 1, 1), (2, 2, 2)→ (1, 2, 3)} for V 2. We have:
Sµ′

1
= {< (0, 1, 1), (2, 1, 3) >} and Cµ2 = {{(0, p)}, {(2, s)}}. Here, the edge

< (0, 1, 1), (2, 1, 3) > is not in (EA)Q. Since Comp(Cµ2 , (0, p)) 
= Comp(Cµ2 ,
(2, s)), condition 4 is violated.

Lemma 2. Let Q and v be a query and a view in standard conjunctive form.
If GR is a contained rewriting of GQ generated from set T of partial mappings
with disjoint subgoal coverage from GQ to Gv, where each element in T sat-
isfies partial-mapping-maximality condition, then Graph−1(GR) is maximally
contained in Q. �

4.2 Partial Mappings and the Impact of OWA

So far, we described the conditions for generating consistent partial mappings
which can induce contained rewriting queries for Q (and if there exists only one
view, the generated rewriting will be maximally contained). However, there is
an issue involved in our top-down approach, which we need to address to ensure
maximality of result rewriting when multiple views exist. This issue is related
to Open-World Assumption (OWA), which implies that partial mappings from
different views which cover the same subgoals must also be broken down before
combined together to guarantee maximally contained rewriting.

To address this issue, we consider an additional phase in our top-down ap-
proach, in which we compare the partial mappings. If partial mappings are from
different views, when their subgoal coverage are not disjoint, we must separate
disjoint portions of the mappings from which we create new mappings. This con-
dition is formalized next, for which we need to introduce some terms as follows.

– V iew(µj) is a function that returns the view for which the µj is defined.
– Subgoals(µj) denotes the maximal set of predicate hyper-nodes of the query

in the domain of µj . Similarly, for a setM of partial mappings, Subgoals(M)
returns the union of maximal predicate hyper-nodes in the domain of each
partial mapping µk in M .

– Comps(µj) is the set of components for subgoals of the query in the do-
main of µj . As mentioned earlier, these components represent dependencies
between the subgoals with respect to µj .

– Subset relationship (µ1 ⊆ µ2) between two partial mappings µ1 and µ2

(from the same view) is defined as µ1 being an extension of µ2 and with
Subgoals(µ1) ⊆ Subgoals(µ2).

– Equality relationship (µ1 = µ2) between two partial mappings µ1 and µ2

means that µ1 ⊆ µ2 and µ2 ⊆ µ1.

Complete-mapping-maximality condition: Let M be the set of partial
mappings generated for a query Q and a set of views V . Complete-mapping-
maximality condition is satisfied if the following holds.



190 N. Mohajerin and N. Shiri

∀µi ∈ M : (∃µj ∈ M : V iew(µi) �= V iew(µj) ∧ Subgoals(µi) ∩ Subgoals(µj) = S)
⇒ ∃M ′ ⊆ M : (∀µ′

k ∈ M ′ : µ′
k ⊆ µi ∧ |Comps(µ′

k)| = 1) ∧ Subgoals(M ′) = S
(5)

The above condition states that for every partial mapping µi in M generated
during the first phase, if there exists some other partial mapping µj in M from a
different view where the two mappings share subgoal coverage, then there should
exist a subsetM ′ of the partial mappings inM such that each mapping µ′k inM ′

is a subset of µi and the subgoal coverage of µ′k is a component in the intersection
of µi and µj . Simply put, for every two partial mappings from different views,
their overlapping subgoal coverage must be created into minimal components.

Example 4. Suppose set M contains the mappings µ1, µ′2 and µ′3 for the query
and views in Example 3. Recall that for µ1, {{(0, p), (1, r)}, {(2, s)}} is the
coverage of the mapping in form of components. As was shown in the example,
µ2 violates condition 4, and hence we replace it with µ′2 and µ′3 having the
coverage {{(0, p)}} and {{(2, s)}}, respectively.

For µ1, we notice that this mapping overlaps with µ′2 over (0, p). Therefore, an
extension of µ1 must exist in M having coverage equal to component to which
(0, p) belongs. However, no such mapping exists inM and therefore this condition
is violated. To rectify this, we can add a new mapping µ11 to M with coverage
{{(0, p), (1, r)}}. By comparing the mappings µ′3 and µ1, we note that the two
share the predicate (2, s), and since no such extension of µ1 exists inM , again this
condition is violated. To rectify this, we need to add µ12 with coverage {(2, s)}
toM . For mappings µ′2 and µ′3, we notice that condition 5 is satisfied. Hence, the
result of comparing the mappings is the set M = {µ1, µ11, µ12, µ

′
2, µ

′
3}, where

the subgoal coverage of µ1 is {{(0, p), (1, r)}, {(2, s)}}, µ11 is {{(0, p), (1, r)}},
µ12 is {{(2, s)}}, µ′2 is {{(0, p)}}, and the subgoal coverage of µ′3 is {{(2, s)}}}.

4.3 Rewriting Generation in HMCQ

The final phase in our top-down approach to rewriting focuses on generation of
rewriting R using the partial mappings in M . The main task in our rewriting
generation phase is to efficiently combine partial mappings in M and generate a
set of complete mappings, each of which resulting in a conjunctive query cover-
ing the entire body of Q. Union of these conjunctive queries form a maximally
contained rewriting of Q using V . In doing so, we take advantage of the following
property.

Property 1. When combining partial mapping from M to generate rewriting
for GQ using a set graphs of views in V , for every combination C that results
in a non-redundant rewriting, the following two conditions must hold:
1. ∀µi&µj ∈ C : Subgoals(µi) ∩ Subgoals(µj) = ∅
2. �µ′ ∈M : (∃µ1 . . . µk ∈ C : (µ1 ∪ µ2 ∪ . . . ∪ µk = µ′))

Using these two properties, we can eliminate many useless combinations of
partial mappings in the rewriting phase. The first condition in Property 1 is the
same as disjoint property in Minicon [PL00]. The second condition in Property
1 is unique to our approach and can be used to further reduce the search space in
the rewriting generation phase. The following example illustrates these points.
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Example 5. Let set M be a set of mappings generated for query Q and views V1

and V2 in Example 2. To generate a rewriting R for Q, we examine combinations
of those elements in M which satisfy both conditions of the above property
as follows. The only combinations that satisfy both conditions are {µ1} and
{µ11, µ

′
3}. These queries are as follows:

R1(X,Y,W ) : − V 1(X,Y,X,W, Y ).
R2(X,Y,W ) : − V 1(X,Y,X,E1, F1), V 2(W,B1, Y ).

It is noteworthy that for this example, the Minicon algorithm produces the
following rewriting R′.

R′1(X,Y,W ) : − V 1(X,Y,X,E1, F1), V 1(A1, B1, D1,W, Y ).
R′2(X,Y,W ) : − V 1(X,Y,X,E2, F2), V 2(W,B2, Y ).

5 TreeWise Rewriting Algorithm

We can now present details of our top-down algorithm, called TreeWise, which
uses the HMCQ model. By using the conditions and properties captured in HMCQ
and by carefully choosing proper data structures and procedures, TreeWise is set
to efficiently generate better quality rewritings without any post-processing.

The algorithm operates in three phases: mapping tuple construction, binary-
tree construction, and rewriting generation phase. The first phase corresponds
to the generation of partial mappings presented using HMCQ. In the binary tree
construction phase, we address the issues involved in partial mapping comparison
discussed in our analysis. Finally, the rewriting generation phase includes steps
for combining partial mappings and generation of rewritings. In what follows,
we describe details of three phases.

5.1 Mapping Tuple Construction Phase

In section 4.1, we described the four necessary conditions to ensure usabil-
ity of partial mappings in generating maximally contained rewriting. We now
use this knowledge to generate a set of consistent partial mappings each of
which satisfying these conditions. In this phase of the TreeWise Algorithm,
for each view Vi in V , a set of mapping tuples TVi is created. Each element
t =< µt, ρt, ((GH)Vi)t, ((GP )Q)t, Ct, Subst > in TVi is defined as follows.

– µt is a partial mapping from a subset of attribute-nodes ofGQ to nodes ofGVi .
– ρt is the conjunctive equivalent of the partial mapping µt. That is, ρt is a

partial mapping from Q to Vi.
– ((GH)Vi)t is a copy of the head-graph of view in HMCQ representing µt. To

this graph, some edges may be added to make the mapping consistent.
– ((GP )Q)t is the copy of the predicates-graph of the query that has edges

added during the mapping construction phase to reflect subgoal dependencies
in the domain of µt (refer to partial-mapping-consistency condition).

– Ct is the set of connected components in ((GP )Q)t.
– Subst is the set of subgoal hyper-nodes in predicates-graph of the query

covered by µt. That is, Subst = Subgoals(µt).



192 N. Mohajerin and N. Shiri

The predicate hyper-nodes in GVi form a set of equivalence classes, each of
which representing targets for a predicate hyper-node in GQ . Next, for each
partial mapping µt from GQ to GVi , we create a mapping tuple and examine it
for the four conditions described in section 4.1.
Head-unification condition: Conforming to condition 1, we check the set Vd of
nodes in attributes-graph of the query in the domain of µt. For each node nk

in (Vd)Q that is mapped to an existential node in (Ve)Vi , we remove from the
domain of µt, attributes of hyper-node pm ∈ (Vp)Q, where nk ∈ pm.
Join-recoverability condition: To satisfy condition 2, for each existential edge
< nk, nk′ > in the attributes-graph of the query, where only nk is in the domain
of µt, we verify if nk is mapped to a distinguished node in the view. Otherwise,
we have to remove from domain of µt, attributes of hyper-node pm in (EP )Q,
where nk ∈ pm.
Partial-mapping-consistency condition: For condition 3 to hold, we have to ex-
amine each edge < nk, nk′ > in attributes-graph of the query, where nk and nk′

are both in the domain of µt, and find a set H of distinguished edges to add to
the view in order to make the mapping consistent. For the three possible cases
mentioned in the description of condition 3, TreeWise proceeds as follows:

1. If nk and nk′ are both mapped to existential nodes in the view, then edge
< µt(nk), µt(nk′) > must exist in (EA)Vi . If not, then we remove from the
domain of µt, nodes of hyper-nodes pm and pm′ in (EP )Q, where nk and nk′

are in pm′ and pm′ , respectively. However, if the mapping exists in the view,
then subgoal dependency exists between pm and pm′ and this dependency
is captured by TreeWise in the form of an edge < pm, pm′ > in the copy
((GP )Q)t of the predicates-graph of the query for µt. After addition of a new
edge to (((GP )Q)t), this graph has to be replaced by its transitive closure
graph, since dependency relation entails transitivity.

2. If nk is mapped to an existential node and nk′ to a distinguished node, then
we have to remove the nodes of pm from domain of µt, where nk ∈ pm.

3. If nk and nk′ are mapped to distinguished nodes in Vi, even if the mapping of
the edge does not exist in the view, we can add it to the rewriting. Hence, if
µt(nk) and µt(nk′ ) belong to different hyper-nodes in head-graph ((GH)Vi)t

of the view and the edge does not already exist, we add it.

After checking every edge and taking the appropriate action, tuple t will now
have the set of connected components Ct where the subgoals of each component
is dependent on one another.
Partial-mapping-maximality condition: Violation of condition 4 indicates that
the current mapping as a whole may not generate maximally contained rewrit-
ing. Therefore, in this case, we should replace the mapping by its smaller con-
stituencies, i.e, breaking the mapping into smaller pieces.

The focus of our attention is now on set S presented in Definition 9. Addi-
tionally, to decide the breaking strategy, the algorithm keeps track of violations
of condition 4 in the form of conflicts between components in predicates-graph
of the mapping tuples in the following manner. For every edge ei in S with
nodes belonging to different components of Ct, we test whether ei is present in
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the graph of Q. If not, a conflict pair between predicate hyper-nodes containing
nodes of ei is created. Using dependency in ((GP )Q)t and the set containing
conflict pairs, TreeWise breaks µt into smaller mappings in such a way that each
new mapping will have maximum number of components without any conflict
between its predicate hyper-nodes. The following is the description of mapping
tuple construction phase of the TreeWise algorithm.

procedure constructMappingTuples(Q, V,GQ, GV )
Inputs: /* Q and V are conjunctive queries in standard form */

/* GQ and GV are the graphs of Q and V in the HMCQ model*/
Output: T is a set of consistent mapping tuples.

T = ∅.
for each view v in V
Tv = ∅.
Form set Ev of Equivalent Classes of v for subgoals in Q.
for each element e in the cartesian product of the elements in Ev,

where e covers set g of subgoals in Q
Let h be the least restrictive head-homomorphism
on v such that there exists a mapping ρt and
its corresponding µt in HMCQ such that ρt(Subst) = h(e′), where
Subst ⊆ g and e′ ⊆ e, and µt satisfies conditions 1–3.
if h and ρt exist, then:

form tuple t = (µt, ρt, v, (GH)v, ((GP )Q)t, Ct, Subst), where:
a) (GH)v is the head-graph of v with

with minimal set of edges to represent h.
b) ((GP )Q)t is the predicates-graph of Q with

minimal set of edges to represent dependency from
condition 3.

c) Ct are the connected components in ((GP )Q)t

Conflicts = ∅.
Form set St described in Definition 9 for tuple t.
for each edge < n1, n2 > in St where
Comp(Ct, P red(GQ, n1)) 
= Comp(Ct, P red(GQ, n2)):

if < n1, n2 > is not in GQ, then:
add pair (Pred(n1), P red(n2)) to Conflicts.

Break t into minimal set of mapping tuples Tt such that for each
element
t′ in Tt, Subst′ does not contain two elements p1 and
p2 where (p1, p2) is in Conflicts.
Tv := Tv ∪ Tt.

T := Tv ∪ T .
Return T

5.2 Binary Tree Construction Phase

During its second phase, the algorithm checks for complete-mapping-maximality
condition. However, in case of violation, the partial mapping does not have to
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be removed from the set. Instead, new smaller mappings that are all extensions
of the original mapping must be created and added to the set of mapping tuples.
We refer to this process as cloning a partial mapping tuple into children mapping
tuples. To facilitate testing of condition 5 and also to keep track of parent-child
relationships between the mapping tuples, the TreeWise algorithm uses binary
trees (hence the name TreeWise) in the following manner.

For each partial mapping tuple generated in the previous phase, TreeWise
creates a binary tree with this tuple as its root. Therefore set T of mapping-
tuples becomes a set T ′ of binary trees. Next, the root of each binary tree t′i
in T ′ is compared with the leaf-tuples of all other trees in T ′ that are from
different view (than the root). For each leaf-tuple mjk

of t′j that has intersection
on subgoal coverage with the root of t′i, one intersection and one difference tuple
are generated and added as children of mjk

in t′j . Dependencies presented in
predicates-graph ((GP )Q) ofmjk

adds, to the intersection child, all the predicates
in the components of the intersection.

After comparing roots of every tree with leaves of all other trees that are
from different views, condition complete-mapping-maximality may not still be
satisfied. We now need to clone the leaf-nodes that have intersection with at
least one other tuple into children nodes having only one component based on
set Ct of each tuple. With the TreeWise algorithm, this task is straightfor-
ward due to using binary trees. The following describes details of the second
phase.

procedure binaryTreeConstruction(T )
Inputs: /* T is the set of partial mapping tuples

created in the first phase of the algorithm */
Output: T ′ is a set of binary trees with mapping-tuples as nodes.

T ′ = ∅.
for each tuple t in T :

Form a binary-tree t′ with t as the root and Add it to T ′.
for each root r of tree t′ in T ′:

for each tree t′′ in T ′ such that there exists a leaf-node m
in t′′ such that Subsm belongs to more than one component in
((GP )Q)m:

for each leaf-node m in t′′:
if Subsm ∩ Subsr 
= ∅ then:

a) form new tuple m1 such that Subsm1 contains all the
predicates hyper-nodes in the components from Cm that
have a predicate included in Subsm ∩ Subsr.

b) form new tuple m2 such that Subsm2 = Subsm − Subsm1.
Set m1 as the left child and m2 as the right child of m.

for each tree t′ in T ′ such that there exists a
leaf-node m in t′ such that Subsm belongs to more than one component
in Cm:
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for each leaf-node m in t′ such that Subsm
belongs to more than one component in Cm and Subsm
has intersection with at least one root of a tree in T ′ :

a) form new child tuple m1 of m such that |Cm1 | = 1.
a) form new child tuple m2 of m such that Subsm2 = Subsm−
Subsm1 .
set m1 as the left child and m2 as the right child of m.

Return T ′

5.3 Rewriting Generation Phase

In the last phase of TreeWise algorithm, rewriting queries are generated from
partial mapping tuples nodes of the trees in set T ′. Using Property 1, TreeWise
algorithm considerably reduces the search space of this phase. For each valid
combination c of tuples satisfying Property 1, a rewriting query is generated.

For each tuple t of view v in a combination c, generating rewriting involves
creating a subgoal v(Y ′) representing t in the body of the rewriting. For gen-
erating subgoal v(Y ′) from view definition v(Y ), we use the partial mapping
ρ−1

n to unmap distinguished variables (Y ) of the view to variables of the query.
There are two issues involved in this task; First of all, for any variable y in Y
that is not in the range of the partial mapping ρn, we must create fresh copy
of y and add it to v(Y ′). Secondly, since in ρn a set of variables of the query
may be mapped to a single variable in Y of the view, we define a representative
of this set arbitrarily, except we use distinguished variables of query whenever
possible. Since this choosing of the representative must be performed uniformly
across the tuples of combination c, similar to Minicon algorithm [PL00], we use
EC(Y ) to refer to this uniformity across the body of the rewriting.

procedure rewritingGeneration(T ′)
R = ∅.
for each combination c = {t1, . . . , tk} of tuples of tree-nodes in set T ′

where:
a) Subs(t1) ∪ . . . ∪ Subs(tk) cover exactly the subgoals of Q.
b) for any i 
= j, Subs(ti) ∩ Subs(tj) = ∅.
c) for any i 
= j, parent(ti) 
= parent(tj).

for each tuple ti in the combination c:
Define mapping φi on the Y i = Graph−1(Headti) as follows:
if variable y ∈ Y i is in the range of ρti

φi = ρ−1
ti

(y).
φi(y) is a fresh copy of y.

Form conjunctive rewriting r:
r(EC(head(Q))) : − Vn1(EC(φ1(Y 1))), . . . , Vnk

(EC(φk(Y k))).
add r to R.

Return R
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6 Experiments and Preliminary Results

Due to space limitations, in this section we only present a summary of the
results of our experiments. These experiments were intended to evaluate the
performance of TreeWise by comparing it with three versions of the Minicon
algorithm which we have implemented. The results are used to analyze and
compare strengths and limitations of these algorithms.Our experiments includes
three classes of queries: chain, star, and complete queries, as used in [PL00].
In addition to these queries, we also tested the algorithms using conjunctive
queries, chosen randomly from a pool of such queries.

To make the results of our experiments comparable to Minicon, we used the
same random query generator used in [PL00], which was kindly provided to us
by Dr. Pottinger. The results are compared using the following parameters: (1)
performance, i.e., the elapsed time to generate the rewriting, (2) the length of
the rewriting, i.e., number of rules, (3) the width of the rewriting queries, and
(4) the area of the rewriting (the product of query width and length.

Our experiments indicate that in general performance of Minicon and the
TreeWise algorithm are very close. In few cases Minicon slightly outperforms
TreeWise (i.e., case of star queries where all of the joined variables are distin-
guished). In some cases, the top-down, view-based approach of TreeWise algo-
rithm outperforms the bottom-up, subgoal-based approach of Minicon (i.e., case
of chain queries with only 2 distinguished variables, case of star queries with all
non-joined variables being distinguished). We made the following observations
from our experiments:

(1) Naturally, a top-down approach produces fewer mapping-tuples during
the tuple construction phase, compared to the MCDs generated by Minicon
during its first phase. In the second phase, TreeWise generates new tuples only
if necessary. Furthermore, the tree structure which keeps track of child-parent
relationships improves efficiency of the algorithm in the third phase. (2) When
there is a large number of joins between existential variables (case 1 of chain,
star, and complete queries), TreeWise with its graph-based approach in recording
dependencies between subgoals runs increasingly faster than Minicon algorithm,
which discovers these dependencies multiple times. (3) The overhead of length
and width optimization routines for Minicon algorithm, when performed, is quite
high. In general, the overhead of length optimization grows rapidly in the number
of MCDs. In cases where the number of queries in the rewriting is high (e.g.,
all variables in the query and views are distinguished), the overhead of width
optimization is almost exponential.

7 Conclusions and Future Directions

Our analysis of existing algorithms shows that rewritings generated by those
algorithms are, in general, expensive to evaluate. This is due to their bottom-up
and subgoal-based approach to rewriting. In this paper, our focus was to ex-
plore the top-down approach to generating rewriting. We presented TreeWise,
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an efficient top-down algorithm which takes measures to satisfy the conditions
specified using the HMCQ model. Results of our experiments showed that Tree-
Wise generally produces rewritings that are less expensive to evaluate without
requiring post-processing step like Minicon.

As a future work, we plan to complete the experiments to further study
quality and scalability of TreeWise. We also would like to study extension of
HMCQ for handling conjunctive queries with built-in predicates. Namely, we
are interested in conjunctive queries with homomorphism property such as Left-
Semi-Interval(LSI) queries described in [Klu88]. We think concepts of inequality
graphs presented in [AM02] could be merged with HMCQ to capture the order
of the variables of the query. Also as shown in [AM02], with inequality graph we
can capture the possibility of exporting variables, where an existential variable
can be treated as distinguished using some appropriate mapping.
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Abstract. We consider the problems of conjunctive query answering and
rewriting for information integration systems in which a Description Logic
ontology is used to provide a global view of the data. We present a
resolution-based query rewriting algorithm for DL-Lite+ ontologies, and
use it to show that query answering in this setting is NLogSpace-complete
with respect to data complexity. We also show that our algorithm pro-
duces an optimal rewriting when the input ontology is expressed in the
language DL-Lite. Finally, we sketch an extended version of the algorithm
that would, we are confident, be optimal for several DL languages with
data complexity of query answering ranging from LogSpace to PTime-
complete.

1 Introduction

The use of ontologies as conceptual views over data repositories has proven
to be useful in a variety of different scenarios. In Information Integration (II)
[15], Enterprise Application Integration (EAI) [14], and the Semantic Web [11],
ontologies are used to represent the domain of a given application. This provides
users with a coherent global view of the information, thus hiding the details of
data organization. In this paper, we focus on II systems in which an ontology is
used to provide transparent access to several independent information sources.
Typically, such a system consists of a global ontology, representing the structure
of the application domain, a set of (relational) schemas representing the structure
of the local information sources, and a set of mappings that relates the global
ontology to the local schemas.

The global ontology is often expressed in a Description Logic (DL). DLs are
a family of knowledge representation formalisms that model a given domain in
terms of concepts (unary predicates), roles (binary predicates), and individuals
(constants) [2]. A DL Knowledge Base (KB) consists of a terminological com-
ponent T called the TBox, and an assertional component A called the ABox.
In analogy to databases, the TBox can be seen as a conceptual schema and
the ABox as a (partial) instantiation of the schema. The syntax of DLs can be
restricted in a variety of ways to trade off the expressive power against computa-
tional complexity, and thus to obtain a representation language that is suitable
for the application at hand.
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The main task of an II system is to provide a service for answering a query
Q over the global ontology using information in the local sources. This service
can be realized via query rewriting: the query over the global ontology can be
rewritten into a query that is then evaluated over the local sources [10]. Cal-
vanese et al. [5] showed that query rewriting in global-as-view II systems—that
is, systems in which concepts and roles from the global ontology are mapped
to the local sources by a query over one or more sources [15]—can be solved in
two stages. Given a global ontology T expressed in the description logic DL-Lite
[7] and a query Q over T , we can first eliminate T—that is, we can compute
a query Q′ (which depends on Q and T ) such that, for every ABox A, the an-
swers of Q over T and A, and the answers of Q′ over A coincide; this problem
is known as query rewriting w.r.t. DL TBoxes. We can then deal with the map-
pings by unfolding—that is, by replacing each atom in Q′ with its definition
in the mappings. Assuming mappings are as in [5], this second step is rather
straightforward; in contrast, the rewriting of Q and T into Q′ is the main tech-
nical problem in the overall algorithm. Therefore, in the rest of this paper, we
consider the problem of query rewriting w.r.t. DL TBoxes; the application of our
results in an II setting is then straightforward and can be done as in [5].

The rewriting algorithm by Calvanese et al. for the DL-Lite family of lan-
guages has been used to show that query answering in DL-Lite is in LogSpace

w.r.t. data complexity [7]. Similarly, Rosati used a rewriting algorithm for DL
TBoxes expressed in the EL family of languages [1] to show that query answering
in EL is PTime-complete [18].

In this paper we explore the gap between these two results, and investigate
the case where the TBox is expressed in DL-Lite+—a language for which query
answering is known to be NLogSpace-hard [7]. We present a query rewriting
algorithm for DL-Lite+ and use it to show that query answering in DL-Lite+

can be implemented in NLogSpace, thus closing an open problem from [7].
Moreover, we show that our algorithm exhibits “pay-as-you-go” behavior: it
produces an optimal rewriting for TBoxes expressed in a subset of DL-Lite+ for
which query answering is in LogSpace. Finally, we provide a sketch showing
how this algorithm could be straightforwardly extended to deal with members
of the EL family and beyond. In fact, we are confident that such an algorithm
would not only deal with the full spectrum of languages from DL-Lite to EL
extended with inverse roles, universal quantifier, and functionality assertions,
but would be optimal with respect to data complexity for all such languages.

2 Preliminaries

2.1 Description Logic DL-Lite+

For A an atomic concept and P an atomic role, a DL-Lite+ basic concept has
the form A, ∃P , or ∃P.A. A TBox is a set of inclusion assertions of the form
B1 � B2 or P1 � P2, where B1 and B2 are basic concepts, and P1 and P2

are atomic roles. Without loss of generality, we assume that no TBox contains
assertions of the form ∃P.A � ∃S.B: without affecting satisfiability of the TBox,
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Table 1. Semantics of DL-Lite+

Semantics of concepts: Semantics of assertions:

(∃P )I = {x | ∃y.〈x, y〉 ∈ P I}
(∃P.A)I = {x | ∃y.〈x, y〉 ∈ P I ∧ y ∈ AI}

I |= A(a) iff aI ∈ AI

I |= P (a, b) iff (aI , bI) ∈ P I

I |= B1 � B2 iff BI
1 ⊆ BI

2

I |= P1 � P2 iff P I
1 ⊆ P I

2

each assertion of this form can be replaced with ∃P.A � C and C � ∃S.B, for C
a fresh atomic concept. An ABox is a set of membership assertions of the form
A(a) or P (a, b), where A is an atomic concept, P is an atomic role, and a and b
are constants. A DL-Lite+ knowledge base (KB) K is a tuple 〈T ,A〉, where T is
a TBox and A is an ABox.

An interpretation I = ((I , ·I) consists of a nonempty interpretation domain
(I and a function ·I that maps each concept C to a subset CI of (I , each role
P to a subset P I of (I × (I , and each constant a to an element aI of (I .
The function ·I is extended to concepts as shown in the left part of Table 1. An
interpretation I is a model of an inclusion or membership assertion α, written
I |= α, if I and α satisfy the conditions shown in the right part of Table 1. An
interpretation I is a model of a KB K = 〈T ,A〉, written I |= K, if I satisfies
each of the inclusion assertions in T and each of the membership assertions in
A. A KB K is satisfiable if it has at least one model; furthermore, K logically
implies an assertion α, written K |= α, if all models of K are also models of α.

DL-Lite is obtained from DL-Lite+ by disallowing concepts of the form ∃P.A
on the left-hand side of inclusion assertions B1 � B2. The definition of DL-Lite
in [7] additionally allows for inverse roles. Extending DL-Lite+ with inverse roles
results in a logic with a PTime-hard query answering problem [7]. Since our goal
in this paper is to investigate NLogSpace-complete DLs, we do not consider
inverse roles in this paper.

2.2 Conjunctive and Datalog Queries

We use the well-known notions of a first-order signature, terms, variables, and
atoms. A Horn clause is an expression of the form H ← B1 ∧ · · · ∧Bm, where
H is a possibly empty atom and {Bi} is a set of atoms. H is called the head
and the set {Bi} is called the body. With � we denote the empty clause that
has no body atoms and whose head atom is ⊥. A Horn clause C is safe if all
variables occurring in the head also occur in the body. A Horn clause is a fact if
it is safe and does not contain body atoms; instead of H ←, we usually denote
such clauses as H . With var(C) we denote the number of variables in a clause C.
The depth of a term is defined as depth(t) = 0 for t a constant or a variable and
depth(f(s1, . . . , sm)) = 1 + max(depth(s1), . . . , depth(sm)); the depth of an atom
is defined as depth(R(t1, . . . , tn)) = max(depth(t1), . . . , depth(tn)); and the depth
of a Horn clause C is depth(C) = max(depth(H), depth(B1), . . . , depth(Bm)).
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A datalog program P is a set of function-free, safe Horn clauses. The exten-
sional database (EDB) predicates of P are those that do not occur in the head
atom of any Horn clause in P ; all other predicates are called intensional database
(IDB) predicates. Furthermore, P is linear if each Horn clause in P contains at
most one IDB predicate in the body.

A datalog query Q is a tuple 〈QP , P 〉, where QP is a query predicate and P is a
datalog program. A datalog query Q = 〈QP , P 〉 is called a union of conjunctive
queries if QP is the only IDB predicate in P and the body of each clause in
P does not contain QP ; furthermore, Q is a conjunctive query if it is a union
of conjunctive queries and P contains exactly one Horn clause; finally, Q is a
linear datalog query if P is a linear datalog program. A tuple of constants �a
is an answer of a datalog query Q = 〈QP , P 〉 on a DL-Lite+ knowledge base
K = 〈T ,A〉 if and only if K ∪ P |= QP (�a), where P is considered to be a set of
universally quantified implications with the usual first-order semantics; the set
of all answers of Q on K is denoted by ans(Q,K).

2.3 Resolution with Free Selection

Resolution with free selection is a well-known calculus that can be used to decide
satisfiability of a set of Horn clauses N [4]. The calculus is parameterized by a
selection function S that assigns to each Horn clause C a nonempty set of atoms
such that either S(C) = {H} or S(C) ⊆ {Bi}. The atoms in S(C) are said to
be selected in C. The resolution calculus with free selection R consists of the
following resolution inference rule.

A← B1 ∧ · · · ∧Bi ∧ · · · ∧Bn C ← D1 ∧ · · · ∧Dm

Aσ ← B1σ ∧ · · · ∧Bi−1σ ∧Bi+1σ ∧ · · · ∧Bnσ ∧D1σ ∧ · · · ∧Dmσ

As usual, we make a technical assumption that the premises do not have variables
in common. The atoms Bi and C must be selected in the corresponding premises
by a selection function and σ = MGU(Bi, C); that is, σ is the most general unifier
of Bi and C as defined in [3]. The two clauses above the inference line are called
the premises and the clause below the line is called the resolvent.

An inference is an application of an inference rule to concrete premises. A
set of Horn clauses N is saturated by R if, for any two premises P1, P2 ∈ N ,
the set N contains a clause that is equivalent to the resolvent of P1 and P2

up to variable renaming. A derivation by R from a set of Horn clauses N is a
sequence of sets of Horn clauses N = N0, N1, . . . such that, for each i ≥ 0, we
have that Ni+1 = Ni∪{C}, where C is the conclusion of an inference by R from
premises in Ni. A derivation is said to be fair if, for any i and any two Horn
clauses P1, P2 ∈ Ni to which resolution is applicable, some j ≥ i exists such that
R ∈ Nj, where R is the resolvent between P1, P2. The limit N∞ of a (possibly
infinite) fair derivation from a set of Horn clauses N is defined as N∞ =

⋃
iNi. It

is well known that N∞ is saturated by R and does not depend on the derivation
[4]. A set of Horn clauses N is satisfiable if and only if � 
∈ N∞. A clause C is
said to be derivable from N iff C ∈ N∞.
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3 Answering Conjunctive Queries in DL-Lite+

Given a DL-Lite+ TBox T and a conjunctive query Q = 〈QP , {QC}〉, our goal is
to compute a rewriting rew(Q, T )—that is, a query such that, for each ABox A,
evaluating rew(Q, T ) overA and evaluating the queryQ directly overK = 〈T ,A〉
produces exactly the same answers. We derive this algorithm in two steps. In
this section, we first show how to compute the set of answers ans(Q,K) directly;
then, in Section 4 we use this result to derive the rewriting algorithm.

It is well known that �a ∈ ans(Q,K) if and only if Ξ(K) ∪ {QC , ⊥ ← QP (�a)}
is unsatisfiable, where Ξ(K) is the set of clauses obtained by transforming K as
shown in Table 2. Therefore, to answer Q over K, we need a decision procedure
for checking satisfiability of the latter set of clauses. We derive this procedure
using the principles outlined by Joyner [12].

Given K and Q, with N we denote the set of clauses of the forms shown in
Table 2 that can be constructed using the signature of K and Q. It is not difficult
to see that N is finite assuming that K and Q are finite. Furthermore, clearly,
if we translate K into a set of clauses Ξ(K), then Ξ(K) ∪ {QC} ⊆ N . Finally,
we saturate Ξ(K) ∪ {QC , ⊥ ← QP (�a)} using RDL—a suitably parameterized
resolution with free selection calculus. Since RDL is sound and complete, in
order to obtain a decision procedure we only need to show that each saturation
terminates. This is done in the key Lemma 2, which shows that the resolvent of
any two premises in N by RDL is also a clause in N . This immediately implies
termination: in the worst case, the saturation derives the entire set N , which is
finite.

We now formalize our calculus. We first define the set of clauses N and pa-
rameterize suitably the calculus of resolution with free selection.

Definition 1. Let K be a DL-Lite+ knowledge base and Q = 〈QP , {QC}〉 a con-
junctive query. The set of clauses Ξ(K) is obtained by transforming K as shown
in Table 2. Furthermore, the set of DL-Lite+ clauses N is the set of all clauses
of types shown in Table 2 constructed using the symbols in QC and Ξ(K).

With RDL we denote the resolution calculus with free selection parameterized
with the following selection function S.

– In a clause C of type A1–K2, the selection function S selects the atoms that
are underlined in Table 2.

– In a clause C of type Q1, the selection function S selects the head atom if C
contains functional terms in the head or if the body of C is empty; otherwise,
S selects all deepest body atoms of C.

For N a set of clauses, N∞ is the limit of a fair derivation from N by RDL.

The principles outlined before Definition 1 allow us only to check whether
some tuple �a is an answer to Q over K. Often, however, we need to com-
pute the entire set ans(Q,K). This can be done using the answer literal tech-
nique [9]: instead of saturating Ξ(K) ∪ {QC , ⊥ ← QP (�a)}, we can saturate just
Ξ(K) ∪ {QC} by RDL. The following lemma shows that by doing so we shall
compute all answers to Q over K.
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Lemma 1. Let K be a DL-Lite+ knowledge base, Q = 〈QP , {QC}〉 a conjunctive
query, and �a a tuple of constants. Then, we have �a ∈ ans(Q,K) if and only if
QP (�a) ∈ (Ξ(K) ∪ {QC})∞.

Proof. Clearly, K ∪ {QC} |= QP (�a) iff K ∪ {QC , ⊥ ← QP (�a)} is unsatisfiable;
we now prove that the latter is the case iff QP (�a) ∈ (Ξ(K) ∪ {QC})∞. The (⇐)
direction is trivial. For the (⇒) direction, note that Ξ(K) ∪ {QC} does not con-
tain a clause with the empty head, so a saturation of Ξ(K) ∪ {QC} by RDL

cannot derive the empty clause. Furthermore, the predicate QP does not occur
in the body of any clause in Ξ(K) ∪ {QC}; hence, RDL can derive the empty
clause from Ξ(K) ∪ {QC , ⊥ ← QP (�a)} only if QP (�a) ∈ (Ξ(K) ∪ {QC})∞. ��

Thus, to compute ans(Q,K), we simply need to saturate Ξ(K) ∪ {QC} by RDL.
The following key lemma shows that such a saturation terminates.

Lemma 2. For each two clauses C1, C2 ∈ N and Cr the resolvent of C1 and
C2 by RDL, we have that Cr ∈ N .

Proof. Let C1 and C2 be some clauses of N , and let Cr be a resolvent of C1 and
C2 by RDL. The possible inferences by RDL on C1 and C2 are summarized in
Table 3. As can be seen from the table, if C1 and C2 are of types A1–K2, then
Cr is also of type A1–K2.

Assume that C1 is of type Q1, satisfying properties (i)–(iii) of Table 2. If the
head atom QP (�t) of C1 is selected, then resolution is not possible, since no clause
in N contains QP in the body. If a unary body atom A(t) of C1 is selected, then

Table 2. Clause Set N for Q = 〈QP , {QC}〉 and K

Type DL-Lite+ clause DL-Lite+ axiom

A1 A(a) A(a)

A2 P (a, b) P (a, b)

T1 B(x) ← A(x) A � B

T2 P (x, f i
A(x)) ← A(x) A � ∃P.B

T3 B(f i
A(x)) ← A(x)

T4 B(x) ← P (x, y) ∃P � B

T5 B(x) ← P (x, y) ∧ A(y) ∃P.A � B

T6 S(x, y) ← P (x, y) P � S

K1 B(a) ← A(b)

K2 B2(x) ← B1(f
i
A(x)) ∧ A(x)

Q1 QP (�t) ←
∧

Li(�ti)

Note 1. We use A and B to denote atomic concepts, P and S for atomic roles, Li for
atomic concepts or roles, and �t (possibly subscripted) for a tuple of terms. Each axiom
of the form A � ∃P.B is uniquely associated with a function symbol f i

A. For each
clause C of type Q1, (i) var(C) ≤ var(QC), (ii) depth(C) ≤ max(1, var(QC) − var(C)),
and (iii) if a variable x occurs in a functional term in C, then x occurs in all functional
terms in C.
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Table 3. Inferences of RDL on N

A1 + T1 = A1:
A(a) B(x) ← A(x)

B(a)

T2 + T4 = T1:
P (x, f i

A(x)) ← A(x) B(x) ← P (x, y)

B(x) ← A(x)

A2 + T4 = A1:
P (a, b) B(x) ← P (x, y)

B(a)

T2 + T5 = K2:
P (x, f i

A(x)) ← A(x) B(x) ← P (x, y) ∧ C(y)

B(x) ← C(f i
A(x)) ∧ A(x)

A2 + T5 = K1:
P (a, b) B(x) ← P (x, y) ∧ A(y)

B(a) ← A(b)

T2 + T6 = T2:
P (x, f i

A(x)) ← A(x) S(x, y) ← P (x, y)

S(x, f i
A(x)) ← A(x)

A2 + T6 = A2:
P (a, b) S(x, y) ← P (x, y)

S(a, b)

K1 + A1 = A1:
B(a) ← A(b) A(b)

B(a)

T1 + T3 = T3:
C(x) ← B(x) B(f i

A(x)) ← A(x)

C(f i
A(x)) ← A(x)

K2 + T3 = T1:
C(x) ← B(f i

A(x)) ∧ A(x) B(f i
A(x)) ← A(x)

C(x) ← A(x)

Q1 + A1 = Q1:
QP (�u) ← A(t) ∧

∧
Li(�ti) A(a)

QP (�u)σ ←
∧

Li(�ti)σ

Q1 + A2 = Q1:
QP (�u) ← P (s, t) ∧

∧
Li(�ti) P (a, b)

QP (�u)σ ←
∧

Li(�ti)σ

Q1 + T3 = Q1:
QP (�u) ← A(t) ∧

∧
Li(�ti) A(f i

B(x)) ← B(x)

QP (�u)σ ← B(x)σ ∧
∧

Li(�ti)σ

Q1 + T2 = Q1:
QP (�u) ← P (s, t) ∧

∧
Li(�ti) P (x, f i

A(x)) ← A(x)

QP (�u)σ ← A(x)σ ∧
∧

Li(�ti)σ

Note 2. The notation A + B = C denotes that “resolving a clause of type A with a
clause of type B produces a clause of type C.”

C2 can be of type A1 or T3; we now show that Cr satisfies properties (i)–(iii)
of Table 2.

– If C2 is of type A1, unification is possible only if the term t is either a constant
a or a variable y. In the former case, the unifier σ is empty; in the latter case,
σ = {y &→ a}. Clearly, var(Cr) ≤ var(C1) and depth(Cr) = depth(C1), so Cr

satisfies (i) and (ii). Furthermore, since A(t) is the deepest atom in C1, the
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clause C1 does not contain functional terms, so Cr does not contain them
either; hence, Cr satisfies (iii) vacuously.

– If C2 is of type T3, unification is possible only if the term t is a variable or
a functional term.
• If t is a variable y, then σ = {y &→ f i

B(x)}. Clearly, var(Cr) = var(C1),
so Cr satisfies (i). Furthermore, depth(C1) = 0 and depth(Cr) ≤ 1, so Cr

satisfies (ii). Finally, every occurrence of y is replaced with f i
B(x), and

C1 does not contain functional terms, so (iii) holds as well.
• If t is a functional term f i

B(s), the unifier is of the form σ = {x &→ s}.
Clearly, var(Cr) = var(C1), so Cr satisfies (i). Furthermore, since no term
in C1 is deeper than f i

B(s), we have depth(Cr) ≤ depth(C1), so Cr satis-
fies (ii). Finally, the inference does not introduce new functional terms,
so Cr satisfies (iii).

If a binary atom P (s, t) is selected in C1, then C2 can be of type A2 or T2.
We now show that Cr satisfies properties (i)–(iii) of Table 2.

– If C2 is of type A2, the unification is possible only if the terms s and t are
not functional terms. If they are both constants, the substitution σ is empty;
otherwise, σ maps s, t, or both to the corresponding constants in C2. Clearly,
var(Cr) ≤ var(C1), so Cr satisfies (i). Furthermore, depth(Cr) = depth(C1),
so Cr satisfies (ii). Finally, since P (s, t) is the deepest atom in C1, the clause
C1 does not contain functional terms, so Cr satisfies (iii) vacuously.

– If C2 is of type T2, unification is possible only if the term t is a variable or
a functional term.
• If t is a variable xt, then σ = {xt &→ f i

A(s), x &→ s}. Due to the occurs-
check in unification, xt cannot occur in s. The inference thus decreases
the number of variables of C1 in Cr by one: var(Cr) = var(C1)− 1, so
Cr satisfies (i). Furthermore, C1 satisfies (iii), so xt does not occur in
a functional term in C1 (because it does not occur in s). Hence, even
though xt is mapped to a functional term, depth(Cr) = depth(C1) + 1,
so Cr satisfies (ii). Finally, since every occurrence of xt is replaced with
f i

A(s), Cr satisfies (iii) as well.
• Assume that t is a functional term f i

A(t′). If s does not occur in t′, then
s is a variable xs and σ = {x &→ t′, xs &→ t′}. If s occurs in t′, the
only way for the inference to be possible is if t′ = s, so σ = {x &→ t′}. In
both cases, var(Cr) ≤ var(C1) and depth(Cr) ≤ depth(C1), so Cr satisfies
properties (i) and (ii). Furthermore, the inference does not introduce
new functional terms, so Cr satisfies (iii) as well.

This covers all possible forms of C1 and C2, so the lemma holds. ��

This lemma now straightforwardly implies that a saturation of Ξ(K) ∪ {QC}
terminates, so we can use it to compute ans(Q,K).

Lemma 3. For K a DL-Lite+ knowledge base and Q = 〈QP , {QC}〉 a conjunc-
tive query, the saturation of Ξ(K) ∪ {QC} by RDL terminates.
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Proof. The clause set N for Q and K is finite. Moreover, no clause is ever deleted
during the saturation process and, by Lemma 2, N is closed under RDL. Hence,
in the worst case, RDL derives all clauses in N and then terminates. ��

We believe that the result in this section can relatively easily be extended to
more expressive DLs, such as EL extended with inverse roles, universal quan-
tifiers in the implication consequent, and functionality assertions. The key to
achieving this is to extend the clause set in Table 2 to cover the new construc-
tors, and to prove that Lemma 2 still holds. We believe we can do this along
the lines of [17,16]; the main technical difficulty is to precisely describe the in-
teraction between the new types of clause and clauses of type Q1. Once this
is done, however, the rest of this paper (i.e., the material in the following two
sections), should hold with only minor changes. The resulting algorithm would
deal with the full spectrum of languages from DL-Lite to extended EL, and we
are confident that it would still be optimal with respect to data complexity for
all such languages.

4 Rewriting Conjunctive Queries in DL-Lite+

The algorithm from the previous section allows us to compute the answers to
a conjunctive query Q = 〈QP , {QC}〉 over a DL-Lite+ knowledge base K. If we
ask the same query over different ABoxes, the algorithm will repeat a lot of
unnecessary work, since the query answering algorithm depends on both T and
A. In this section, we present an algorithm for query rewriting: given Q and a
TBox T , we compute a datalog query rew(Q, T ) such that, for any ABox A,
the sets of answers of Q over 〈T ,A〉 and of rew(Q, T ) over A are the same.
Thus, our algorithm eliminates the TBox and reduces the problem of answering
conjunctive queries in DL-Lite+ to the problem of answering datalog queries.

A distinguishing feature of our algorithm is that it exhibits “pay-as-you-go”
behavior: the resulting datalog program rew(Q, T ) is optimal for the input TBox
T . If T is in DL-Lite+, then rew(Q, T ) consists of a union of conjunctive queries
and a linear datalog program. We use this fact in Section 5 to establish novel
data complexity bounds for conjunctive query answering. Furthermore, if T is in
DL-Lite, then rew(Q, T ) is a union of conjunctive queries. Hence, our algorithm
generalizes the approach from [7].

We derive the rewriting algorithm in two phases: in Section 4.1, we show how
to convert Ξ(T ) into a nonoptimal datalog program by eliminating function
symbols; then, in Section 4.2 we present an additional step that ensures that the
rewritten query is of optimal form.

4.1 Elimination of Function Symbols

The following definition summarizes the first step of our rewriting algorithm.

Definition 2. For Q = 〈QP , {QC}〉 a conjunctive query and T a DL-Lite+

TBox, ff(Q, T ) is the set that contains exactly all function-free clauses contained
in (Ξ(T ) ∪ {QC})∞.
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We next show that, for each ABox A, we have {QC} ∪ T ∪ A |= QP (�a) if and
only if ff(Q, T ) ∪ A |= QP (�a). Thus, ff(Q, T ) is a rewriting of Q and T , albeit
not necessarily an optimal one. We prove the claim proof-theoretically: we show
that QP (�a) is derivable from {QC} ∪ T ∪ A if and only if it is derivable from
ff(Q, T ) ∪ A. To this end, we first prove that we can always “postpone” the
inferences with the ABox clauses in the saturation of Ξ(T ) ∪ {QC} ∪ A—that
is, we can first perform all inferences with nonground clauses only, and then
perform the inferences involving a ground clause.

Lemma 4. Let Q = 〈QP , {QC}〉 be a conjunctive query, T a DL-Lite+ TBox,
and A an ABox. For each clause C of type Q1 derivable from Ξ(T ) ∪ {QC} ∪ A,
a clause C′ of type Q1 is derivable from Ξ(T ) ∪ {QC} such that, for G the subset
of all clauses of type A1 and A2 in (ff(Q, T ) ∪ A)∞, we have {C′} ∪G |= C.

Proof. We prove the claim by induction on the height of a derivation tree by
which C is derived from Ξ(T ) ∪ {QC} ∪ A. If the derivation tree has height
zero, then C must be the clause QC , so the claim follows trivially for C′ = QC .
Assume that the claim holds for each clause derived from Ξ(T ) ∪ {QC} ∪ A by
a derivation tree of height n, and consider a clause C derived by a derivation tree
of height n+ 1. The clause C is obtained by resolving some clauses C1 and C2.
According to Table 3, one of the premises has to be of type Q1, so we denote it
by C1; the other premise C2 can be of type A1, A2, T2, or T3. By the induction
hypothesis, some clause C′

1 of type Q1 is derivable from Ξ(T ) ∪ {QC} such that
{C′

1} ∪G |= C1. We now consider the different forms that C2 can have.
Assume that C2 is of type A1 or A2. From Table 3 we can see that each

derivation of a clause of type A1 or A2 involves only function-free clauses, so
C2 ∈ G. The inductive claim now trivially holds for C′ = C′

1.
Assume that C2 is of type T2 or T3. We assume that it is of the form

L(�t)← A(x); then, C1 must contain in the body a counterpart atom L(�q). By
examining the inferences between DL-Lite+ clauses shown in Table 3, we can
see that C2 is derivable from Ξ(T ). Note that G contains only ground clauses of
types A1 and A2; thus, since {C′

1} ∪G |= C1, a subset {Gi(�ai)} ⊆ G exists such
that resolving C′

1 on body literals {Gi(�gi)} with the elements of {Gi(�ai)} pro-
duces C1. Furthermore, all such resolution inferences just remove body atoms.
Therefore, if C1 is to contain the atom L(�q) in the body, the clause C′

1 must
contain an atom L(�s) in its body. Hence, C′

1 is of the form (1), and C1 is of
the form (2), where δ maps some variables to constants in {Gi(�ai)} such that
L(�s)δ = L(�q). Finally, resolving C1 and C2 produces the clause C, which is of
the form (3) for σ = MGU(L(�s)δ, L(�t)).

C′
1 = QP (�u) ← L(�s) ∧

∧
Gi(�gi) ∧

∧
Mj( �mj) (1)

C1 = QP (�u)δ ← L(�s)δ ∧
∧
Mj( �mj)δ (2)

C = QP (�u)δσ ← A(x)σ ∧
∧
Mj( �mj)δσ (3)

Note that no inference used to derive C1 changes the number of function symbols
of C′

1; therefore, L(�s) is the deepest literal of C′
1. Furthermore, each variable of
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C′
1 that is replaced by δ with a constant clearly does not occur in L(�s)δ; hence,

the substitutions δ and σ have disjoint domains, and σ = δσ.
We now transform this derivation into a derivation in which all inferences with

ABox clauses are performed after all inferences with only TBox clauses. Let C′

be the clause obtained by resolving C′
1 and C2; we can assume that C′ has the

form (4), where σ′ = MGU(L(�s), L(�t)).

C′ = QP (�u)σ′ ← A(x)σ′ ∧
∧
Gi(�gi)σ′ ∧

∧
Mj( �mj)σ′ (4)

Since L(�s) is the deepest literal of C′
1, the inference between C′

1 and C2 satisfies
the selection function of the calculus RDL. Since both C′

1 and C2 are derivable
from Ξ(T ) ∪ {QC}, the clause C′ is derivable from Ξ(T ) ∪ {QC} as well. Let
x be a variable that occurs in L(�s) and that is replaced by δ with a constant.
Clearly, σ does not contain such x; hence, without loss of generality, we can
assume (*) that σ′ does not contain such variables either—that is, instead of
mapping x to a term in L(�t), we can assume that the corresponding term is
mapped to x.

Let D now be the clause obtained by resolving the literals Gi(�gi)σ′ in C′ with
the ground clauses {Gi(�ai)}. This inference is possible due to assumption (*),
so D has the following form, where δ′ maps some variables of C′ to constants.

D = QP (�u)σ′δ′ ← A(x)σ′δ′ ∧
∧
Mj( �mj)σ′δ′ (5)

Due to (*), σ and σ′ have the same domain which is disjoint with the domain
of δ, so σ = σ′δ. None of the variables occurring in {Gi(�gi)} is in the domain of
σ′, so δ = δ′. Since σ = σ′δ and δ = δ′, we have σ = σ′δ′. Moreover, since σ = δσ,
we have σ = δσ = σ′δ′, so C = D, which proves our claim. ��

This lemma now allows us to prove the desired relationship between the answers
of Q on T and A and the answers of ff(Q, T ) on A.

Lemma 5. Let Q = 〈QP , {QC}〉 be a conjunctive query, T a DL-Lite+ TBox,
and A an ABox. Then, �a ∈ ans(Q, 〈T ,A〉) if and only if ff(Q, T ) ∪ A |= QP (�a).

Proof. (⇐) Note that ff(Q, T ) ∪ A ⊆ (Ξ(T ) ∪ {QC} ∪ A)∞, which trivially im-
plies this direction of the claim.

(⇒) Assume that QP (�a) is derivable from Ξ(T ) ∪ {QC} ∪ A. Since QP (�a) is
of type Q1, by Lemma 4, a clause C′ of type Q1 is derivable from Ξ(T ) ∪ {QC}
such that, forG the subset of all clauses of type A1 and A2 in (ff(Q, T ) ∪A)∞, we
have {C′} ∪G |= C. Since QP (�a) does not contain function symbols, C′ cannot
contain function symbols either, so C′ ∈ ff(Q, T ). Thus, QP (�a) is implied by
ff(Q, T ) ∪G so, by the definition of G, we have ff(Q, T ) ∪ A |= QP (�a). ��

4.2 Optimizing the Rewriting through Unfolding

By Lemma 5, the datalog program ff(Q, T ) is a rewriting of Q w.r.t. T ; however,
it is not necessarily optimal for the TBox T at hand. In particular, the program
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ff(Q, T ) can contain clauses of type T1, T4, and T6; hence, we must assume that
each predicate in ff(Q, T ) can be an IDB predicate, so a clause of type T4 is not
a linear datalog rule. Our goal, however, is to ensure that the rewriting consists
of a linear datalog program and a union of conjunctive queries; furthermore, if
T is a DL-Lite TBox, the rewriting should be a union of conjunctive queries
only. Thus, in this section we introduce a further unfolding step that transforms
ff(Q, T ) into a datalog program of an optimal form.

Definition 3. The unfolding of L(�x)←
∧
Mi( �mi) in N(�n)← L(�x′) ∧

∧
Pj(�pj)

is the clause N(�n)σ ←
∧
Mi( �mi)σ ∧

∧
Pj(�pj)σ, where σ = MGU(L(�x), L(�x′)).

Given two sets of safe Horn clauses R and U , let RU be the smallest set such
that R ⊆ RU and, for each unfolding Cr of a clause C1 ∈ R ∩ U in a clause
C2 ∈ R, we have that Cr ∈ RU . The unfolding of R w.r.t. U is defined as
unfold(R,U) = RU \ U .

We shall apply the unfolding step for R = ff(Q, T ) and U the set of all clauses of
types T1, T4, and T6. Since unfolding eliminates all clauses of type T6, all atomic
roles thus become EDB predicates; thus, the resulting set of clauses, apart from
the clauses of type Q1, is a linear datalog program. Moreover, since all clauses of
types T1 and T4 are also eliminated, the resulting set of clauses becomes a union
of conjunctive queries whenever T is a DL-Lite TBox. Before proceeding, how-
ever, we show that unfolding does not change the set of “relevant” consequences
of a datalog program.

Lemma 6. Let R and U be sets of safe Horn clauses. For any set of facts A
and for any predicate F that does not occur in U , we have R ∪A |= F (�a) if and
only if unfold(R,U) ∪A |= F (�a).

Proof. (⇐) Note that R |= RU and unfold(R,U) ⊆ RU ; therefore, for each clause
C, if unfold(R,U) ∪A |= C then R ∪A |= C.

(⇒) Let H be the hyperresolution calculus—that is, the resolution calculus
in which all the body literals are selected whenever possible, and in which all
selected literals are resolved in one step. It is well known that, if R |= F (�a), then
a derivation tree T for F (�a) from R by H exists [4]. We represent such a tree T
as a tuple 〈TN , δ, λ〉 for TN the set of nodes where we denote with t.i the i-th
child of t ∈ TN and with ε the root node; δ is a function that maps each node
t ∈ TN to a fact δ(t); and λ is a function that maps each node t ∈ TN to a clause
λ(t) such that δ(t) is derived by hyperresolving each δ(t.i) with the i-th body
literal of λ(t). If t is a leaf node, then δ(t) ∈ A and λ(t) is undefined.

We now inductively define a function σ(t) as follows: starting from the leaves
upwards, for each t ∈ TN , we set σ(t) to be the clause obtained from λ(t) by
unfolding each σ(t.i) in the i-th body atom of λ(t) provided that σ(t.i) /∈ U or
δ(t.i) ∈ A; furthermore, we call t a surviving node iff σ(t) /∈ U or δ(t) ∈ A.
We say that a node t2 is the closest surviving node to t1 if t2 is a surviving
node, if it is a descendent of t1, and no node on the path between t1 and t2
is a surviving node. By the inductive definition of σ, it is easy to see that, for
each node t, the fact δ(t) can be derived by hyperresolving σ(t) with the set
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of facts {δ(t1), . . . , δ(tn)}, where t1, . . . , tn are exactly all the closest surviving
nodes to t. Note that, for every node t ∈ TN , we have σ(t) ∈ RU . Moreover, if t
is a surviving node, then σ(t) ∈ unfold(R,U). Therefore, if t is a surviving node,
the fact δ(t) can be derived from unfold(R,U) ∪A.

Since the predicate F does not occur in U , we have F (�a) /∈ U . Furthermore,
δ(ε) = F (�a), so the clause σ(ε) contains F in the head, and σ(ε) /∈ U . Thus, ε is
a surviving node, so δ(ε) can be derived from unfold(R,U) ∪A. ��

We are now ready to define the rewriting of a conjunctive query Q with respect
to a TBox T expressed in DL-Lite+.

Definition 4. The rewriting rew(Q, T ) of a conjunctive query Q = 〈QP , {QC}〉
w.r.t. a DL-Lite+ TBox T is the query 〈QP , unfold(R,U)〉, where R = ff(Q, T )
and U is the subset of N of all clauses of type T1, T4, and T6.

We now state the main property of the reduction algorithm.

Theorem 1. For a conjunctive query Q, a DL-Lite+ TBox T , and an ABox A,
we have ans(Q, 〈T ,A〉) = ans(rew(Q, T ),A).

Proof. Without loss of generality, we can assume that QP does not occur in
Ξ(T ). Then, the claim of this theorem follows straightforwardly from Lemmata
5 and 6. ��

We now prove two important properties about the structure of the rewriting. We
use these properties in Section 5 to prove complexity results about answering
conjunctive queries over DL-Lite+.

Lemma 7. Let Q = 〈QP , {QC}〉 be a conjunctive query, T a DL-Lite+ TBox,
and rew(Q, T ) = 〈QP , P 〉. Then, P can be split into disjoint subsets UQ and UC

such that 〈QP , UQ〉 is a union of conjunctive queries and 〈QP , UC〉 is a linear
datalog query.

Proof. Let UQ ⊆ P be the set of all clauses of type Q1 in P . By the definition of
clauses of type Q1, QP is the head predicate of every clause in UQ, and QP does
not appear in the body of a clause in UQ, so 〈QP , UQ〉 is a union of conjunctive
queries. Let UC = P \ UQ. The program ff(Q, T ) contains clauses of types T1,
T4, T5, and T6. Hence, UC is obtained by unfolding clauses of types T1, T4, and
T6 in clauses of types T1, T4, T5, and T6, and then by removing all clauses of
types T1, T4, and T6. Thus, UC contains clauses of type T5 and clauses of the
form B(x) ← P (x, y) ∧ S(y, z) that are obtained by unfolding a clause of type
T4 in a clause of type T5. Clearly, no clause in UC contains a role predicate in
the head, so all role predicates are EDB predicates. Furthermore, clauses of type
T5 can contain a unary predicate in the head, so unary predicates can be IDB
predicates; however, IDB predicates can occur only in a clause of type T5 in the
body, so all such clauses are linear. Thus, UC is a linear datalog program. ��

Lemma 8. For Q = 〈QP , {QC}〉 a conjunctive query and T a DL-Lite TBox,
rew(Q, T ) is a union of conjunctive queries.
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Proof. Let rew(Q, T ) = 〈QP , P 〉. Since T is a DL-Lite TBox, the set Ξ(T ) does
not contain clauses of type T5. Thus, ff(Q, T ) contains only clauses of types Q1,
T1, T4, and T6. Clauses of types T1, T4, and T6 are unfolded in clauses of type
Q1, so rew(Q, T ) is a union of conjunctive queries. ��

5 Complexity Analysis

It is well known that the problem of deciding P |= A(�a) for P a linear datalog
program is NLogSpace-complete with respect to data complexity [8]. We were
not able to find in the literature a generalization of this result for the case
where P consists of a linear datalog program and a union of conjunctive queries;
therefore, before proceeding, we show that this is indeed the case.

Lemma 9. For Q = 〈QP , QC〉 a union of conjunctive queries, P a linear datalog
program, and A a set of facts, deciding P ∪QC ∪A |= QP (�a) can be performed
in NLogSpace in the size of A.

Proof. If P ∪QC ∪A |= QP (�a), then QP (�a) can be derived from the set of
clauses P ∪QC ∪A using SLD resolution [4]. First, we nondeterministically
choose a query Qi ∈ QC and ground it by nondeterministically choosing a set
of constants from A. We then initialize the goal G to be the resolvent of Qi and
← QP (�a); if resolution is not possible, the algorithm halts. Then, we start the
following loop. We first eliminate all atoms with EDB predicates in G by resolv-
ing them with facts in A; if some atom cannot be resolved, the algorithm halts.
If G has an empty body, the algorithm accepts. Otherwise, we nondeterministi-
cally choose a rule R ∈ P and generate its grounding R′ by nondeterministically
choosing a set of constants from A. Finally, we set our goal G to be the resolvent
between R′ and G; if this is not possible, the algorithm halts. We now repeat the
loop. To ensure termination, we maintain a counter that is initialized in the be-
ginning to the number of ground clauses of P and A multiplied by the number of
the query rules in QC . We decrease the counter after each pass through the loop,
and we terminate the loop if the counter reaches zero. Clearly, if the algorithm
accepts, then SLD resolution for QP (�a) from P ∪QC ∪A exists. Conversely, if
an SLD resolution exists, then we can assume that each ground instance of a
rule is used only once, so an accepting run of our algorithm exists.

Since we are interested in data complexity, the number of predicates p and
their arity r is bounded. Hence, if A contains c constants, we can describe each
ground atom in p · r · )log(c)* bits. The number of atoms in G depends on the
number of rules in P ∪QC , so storing G requires k1)log(c)* bits for k1 a con-
stant that does not depend on c. Finally, the number of ground clauses depends
polynomially on c, so we can store the counter using k2)log(c)* bits for k2 a
constant that does not depend on c. Clearly, the algorithm requires k)log(c)*
bits of space in total for k a constant that does not depend on c. The algorithm
is nondeterministic, so it can be implemented in NLogSpace. ��

We now apply Lemma 9 to show that answering conjunctive queries over
DL-Lite+ knowledge bases is NLogSpace-complete.
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Theorem 2. For a conjunctive queryQ = 〈QP , {QC}〉 and aDL-Lite+ knowledge
base K = 〈T ,A〉, deciding whether �a ∈ ans(Q,K) is NLogSpace-complete w.r.t.
data complexity.

Proof. In [6], it was shown that checking entailment of a ground concept as-
sertion is NLogSpace-hard if we allow for assertions of the form ∃P.A � B.
Membership follows immediately from Theorem 1, Lemmata 7 and 9, and the
observation that the size of rew(Q, T ) does not depend on the size of A. ��

By Lemma 8, if T is a DL-Lite TBox, then rew(Q, T ) is a union of conjunctive
queries, so we can compute answers to rew(Q, T ) over A in LogSpace with
respect to data complexity [13], just as is the case in [7].

6 Conclusion

Motivated by the use of DL ontologies in Information Integration systems, we
have presented a resolution-based algorithm for rewriting conjunctive queries
over DL-Lite+ TBoxes. We have used this algorithm to show that query answer-
ing in DL-Lite+ can be implemented in NLogSpace w.r.t. data complexity.
Together with the hardness result from [6], it follows that query answering in
DL-Lite+ is NLogSpace-complete with respect to data complexity,which closes
what was, to the best of our knowledge, an open problem. Moreover, we have
shown that our algorithm exhibits good “pay-as-you-go” behavior: on the subset
of DL-Lite+ for which query answering is in LogSpace, our algorithm is also
worst-case optimal.

As part of our future work, we plan to extend the technique to deal with
more expressive DLs, and in particular with an extended version of EL; a sketch
describing how this could be done was given at the end of Section 3. Such an
algorithm would be optimal for the full spectrum of languages from DL-Lite to
extended EL—that is, languages for which the data complexity of query answer-
ing ranges from LogSpace to PTime-complete. Finally, we plan to implement
our query answering technique in a prototype Information Integration system—
we have established a promising relationship with researchers at the Univer-
sity of Newcastle who are using Information Integration in their ComparaGRID
project,1 and we plan to use ComparaGRID as an evaluation framework for our
prototype system.
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Pérez-Urbina, Héctor 199
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